Пульсовые зоны. Формулы безопасного пульса на тренировках. Спортивный браслет. Какую частоту пульса вызывает большая интенсивность упражнений


Какой пульс нужен для эффективной тренировки | Особенности строения организма

Думаете, что цифры пульса и артериального давления – это сухая статистика и в тренажёрном зале они совсем ник чему? Зря. Эти показатели не только нужны, но и крайне важны: они помогают правильно рассчитать нагрузку и сделать тренировку максимально эффективной, не причиняя вред здоровью. О том, как узнать идеальный пульс для занятий спортом, узнаем сегодня.

Пульс - это частота сердечных сокращений. То есть– это колебания артериальных стенок, которые возникают при сокращениях сердца. Его также называют ЧСС – частота сердечных сокращений. В нормальном состоянии в момент покоя у взрослого человека в минуту происходит от 60 до 90 таких колебаний.

Разбежка довольно большая и зависит от общей тренированности.

 Частота сердечных сокращений – один из основных способов контролировать интенсивность нагрузки.

Определяем пульс в состоянии покоя

Первое, что нужно сделать, - определить значения пульса в состоянии покоя.

Для этого его показатели нужно измерять в течение недели по утрам, - сразу после пробуждения. Самый низкий показатель за это время и будет вашим пульсом в состоянии покоя.

Если вы в нормальной физической форме, частота пульса будет примерно 60 ударов в минуту. Если частота пульса превышает 70 ударов в минуту – проверьте своё здоровье, это ненормальный показатель.

В норме сердце должно биться с частотой примерно 50 ударов в минуту. У профессионалов, правда, она может составлять и 30 ударов в минуту.

 Максимум для пульса

Максимальный пульс напрямую зависит от возраста и физической подготовки. Он определяется по формуле: 220 минус ваш возраст в годах.

Пульс и интенсивность

Вы должны представлять, для чего тренируетесь. Интенсивность ваших тренировок можно условно разделить на три степени, - в зависимости от физической формы и ваших целей.

Тренировки легкой интенсивности.

Частота вашего пульса составляет 50-60% от максимального пульса. Если у вас есть небольшая физическая подготовка, вам следует начинать именно с таких тренировок. Тренировки этого уровня улучшат состояние здоровья и повысят выносливость. Если вы в хорошей физической форме, то тренировки легкого уровня просто сохранят эту форму без особых улучшений.

Тренировки средней интенсивности.

Частота пульса должна составлять 60-80 % от максимального пульса. Если вы уже хорошо физически подготовлены, то такие тренировки улучшат ваше общее состояние и повысят выносливость.

Тренировки высокой интенсивности.

Частота вашего пульса выше 80 % от максимального показателя. Такая нагрузка нужна тем, кто уже в отличной форме и хочет, например, подготовиться к соревнованиям. Для большей эффективности рекомендуется тренироваться с интервалами, во время которых частота пульса составляет более 90 % от максимального показателя.

Как проверить пульс

«Дедовский» способ: положить 3 пальца правой руки на левое запястье (ближе к тому краю, где находится большой палец) и подсчитать частоту ударов за 10 секунд. Дальше умножить на 6 – это и будет ЧСС в минуту.

Современный вариант: кардиомонитор с датчиком пульса. Он тонкий, компактный, может надеваться на руку, как часы, или эстетично крепиться на груди – в зависимости от модели. Во многих датчиках есть функция контроля – если задать нужные границы, прибор подаст звуковой сигнал при выходе за них.

Также рекомендуем почитать:

Семь секретов молодости

5 секретов здорового сна

Поблагодари за статью - поставь лайк. Простой клик, а автору очень приятно.

fitmania.by

Пульсовые зоны. Формулы безопасного пульса на тренировках. Спортивный браслет

Сердце – важнейший орган человека. Переоценить его значимость в нашем организме просто невозможно. Благодаря занятиям спортом можно повысить возможности сердечно-сосудистой системы и сделать свою жизнь более насыщенной. Вместе с тем без грамотного подхода к тренировкам можно навредить сердцу. В этой статье мы с вами рассмотрим, что такое пульс и пульсовые зоны, и обсудим, как нужно тренироваться, чтобы сердце стало сильнее.

Пульсовые зоны

Частота сердечных сокращений

Что такое частота сердечных сокращений (ЧСС), можно догадаться из названия. Это количество ударов сердца за минуту. На сегодняшний день большинство тренировочных планов составляются на основе пульсовых зон, которые определяются относительно показателя ЧСС. Эти зоны рассчитываются индивидуально для каждого человека. Самых точных результатов можно достичь благодаря функциональной диагностике сердечно-сосудистой системы, но для нас такая точность непринципиальна. Поэтому рассчитаем зоны самостоятельно. Для этого нам понадобится узнать пульс в состоянии покоя и максимальное количество сердечных сокращений.

Как измерить пульс самостоятельно?

Итак, чтобы определить пульс в состоянии покоя, нам нужно сосчитать количество сердечных сокращений за минуту. Самый простой способ сделать это – нащупать пульс на запястье, виске или шее и посчитать, сколько будет ударов на протяжении минуты. Для тех, у кого кровеносные сосуды хорошо спрятаны под кожей, есть пульсометры. Лучше всего делать это утром, в сидячем положении, до завтрака. Определив пульс в спокойном состоянии, можно получить довольно точную информацию о здоровье сердечно-сосудистой системы. Чем она крепче, тем ниже будет рассматриваемый нами показатель. Нормой для среднестатистического человека считается 55-70 ударов в минуту (в состоянии покоя). Хотя все зависит от возраста, пола и уровня физической подготовки. У марафонцев, к примеру, сердце хорошо натренировано, поэтому им достаточно 40 сокращений в минуту, чтобы снабжать тело кровью.

Как измерить пульс самостоятельно

Как посчитать максимальную частоту сердечных сокращений (МЧСС)?

Узнать максимальный допустимый пульс несложно. Для определения МЧСС есть три формулы:

  1. 220 - возраст. Это самый простой и быстрый способ.
  2. Для мужчин формула выглядит так: 214 - (возраст, умноженный на 0,8). А для женщин так: 209 - (возраст, умноженный на 0,9). Данный способ считается более современным.
  3. Третий вариант самый верный, но он требует гораздо больше времени и сил и подойдет только абсолютно здоровым людям. Нужно провести беговой тест с измерением пульса.

Рассчитав основные показатели, можем переходить к обзору пульсовых зон и выбирать для себя наиболее подходящую из них.

1. «Сердечная», или терапевтическая

Это самая щадящая зона, именно поэтому ее называют терапевтической. Диапазон пульса составляет 60-70 % от МЧСС. Тренировка в данной зоне подойдет для тех, кто только начинает оздоровление и имеет слабую физическую подготовку. Нагрузка низкой интенсивности тренирует сердечную мышцу, не подвергая ее риску переутомления. На уровне «сердечной» зоны должна проходить утренняя зарядка и разминка перед силовой тренировкой. Чтобы достичь ее, достаточно выполнить какие-либо упражнения с малой интенсивностью и нагрузкой или просто прогуляться по ровной поверхности.

2. Фитнес, или низкая зона

Зона фитнеса

Зона фитнеса находится в диапазоне 70-80 % от МЧСС. В этом случае метаболизм работает таким образом, что энергия берется из жировых отложений. Таким образом, фитнес-зона позволяет сжечь жиры и уменьшить массу тела. Простой прогулки будет недостаточно для приведения пульса к такому уровню. Для этого нужно ускорить свой шаг, подняться по ступенькам, пробежаться трусцой или заняться гимнастикой в среднем темпе.

3. Аэробная зона

Когда пульс достигает 80-90 % от максимума, начинается аэробная зона. Из-за увеличения интенсивности тренировки организм начинает тратить больше калорий. На выведение из организма жира у него не хватает времени, поэтому он начинает получать энергию из углеводного запаса.

4. Анаэробная зона

Когда частота пульса доходит до 90 % от максимального уровня, начинается зона анаэробной нагрузки. Организм начинает испытывать недостаток кислорода и переходит на анаэробное питание клеток. Жиры в этой зоне практически не сжигаются, а энергию организм получает из углеводов. Обмен веществ в анаэробном режиме приводит к появлению побочного продукта – молочной кислоты. Именно эта кислота создает чувство усталости в мускулах, которое появляется при скоростном беге на короткие дистанции.

Аэробная зона

Образование в мышцах молочной кислоты делает тренировки в анаэробной зоне непродолжительными. Однако они очень эффективны, так как развивают мышечную выносливость. В клетках мышечных тканей есть буферные вещества, связывающие молочную кислоту, позволяя мышцам проработать дольше. Когда эти вещества израсходуются, содержание молочной кислоты в мышцах растет, и они начинают сильно болеть. Организм пытается приспособиться к этому и вырабатывает еще больше буферных веществ. Тогда на следующей тренировке мышцы продержатся дольше. Еще одно название анаэробной зоны – зона силовой выносливости. Теперь вы знаете, чем оно обусловлено. Тренировки в этом режиме также способствуют росту мышечной массы.

5. Зона максимальной нагрузки

Когда пульс приближается к 100 % от МЧСС, начинается зона максимума. Здесь организм работает на пределе возможностей. Все запасы и буферные вещества расходуются, а сердечно-сосудистая и дыхательная системы функционируют с максимально возможной эффективностью.

Зона силовой выносливости

В зоне максимальной нагрузки тратится большое количество калорий, а преобладающим процессом в организме является анаэробный. Обычно тренировки в таком режиме нужны спортсменам перед соревнованиями. Тем, кто хочет похудеть и укрепить мышцы, вовсе не обязательно доводить себя до такого изнеможения.

Как применять знания о пульсовых зонах?

Начинающим спортсменам, а также тем, кто занимается фитнесом для оздоровления и укрепления тела, стоит чередовать в тренировках первые четыре пульсовые зоны. Разминка для того и придумана, чтобы плавно подготовить организм к более высоким нагрузкам, поэтому ее стоит начать в «сердечной» пульсовой зоне.

Чтобы похудеть, необходимо чередовать фитнес-зону с аэробной. Когда почувствуете, что ваш организм готов к большему, постепенно подключайте короткие анаэробные тренировки, повышающие выносливость. Кстати говоря, если вы привыкните измерять нагрузку не километрами, а минутами и часами, то следить за показателями организма будет гораздо удобнее.

Повышение пульса при физической нагрузке – это реакция сердца на работу мышц. Если пульс растет быстро при умеренных усилиях мышц, значит, сердце пока не готово к такой интенсивности. Несмотря на то что организм обладает адаптивными свойствами, постоянная работа на повышенном пульсе вредна для него. В идеале во время тренировки должна быть небольшая частота сердцебиения. Если будете тренироваться регулярно и осмысленно, со временем пульс сам начнем «падать». А чтобы ему помочь, нужно контролировать пульсовые зоны. Не лишним будет также включить в рацион продукты, питающие сердечную мышцу.

Спортивный браслет

Спортивный браслет

За последние годы среди приверженцев здорового образа жизни очень модными стали спортивные браслеты, они же фитнес-трекеры. Давайте узнаем, что такое спортивный браслет и как он нам поможет в контроле пульсовых зон. Данное устройство представляет собой небольшой стильный гаджет, который по форме напоминает часы. Он может оснащаться дисплеем, однако большинство современных моделей выполняются без него. Браслет синхронизируют со смартфоном, на который и выводится вся необходимая информация.

В зависимости от модели устройство может выполнять разные функции: измерение шагов, контроль фаз сна, измерение пульса и прочее. Создан аксессуар в ответ на постоянный рост количества людей, страдающих лишним весом. Браслет дополнительно мотивирует человека и позволяет ему четко понимать, выполнил он план тренировки (составляется в зависимости от цели) или нет. В нашем случае браслет удобен тем, что позволяет постоянно видеть частоту пульса, не отвлекаясь на ее подсчет.

Конечно, можно обойтись и без данного гаджета, и даже бес подсчета, ведь мы знаем, какая нагрузка к какой пульсовой зоне относится. Тем не менее частота пульса – показатель сугубо индивидуальный, поэтому его все же желательно считать. Вы уже знаете, как измерить пульс самостоятельно. Займитесь этим вопросом практически, воспользовавшись каким-либо методом, во время разных режимов тренировки, и вы сможете обозначить свои ориентиры. Через неделю или месяц повторите подсчет и адаптируйте программу занятий под новые результаты. А они обязательно будут, если выполнять все правильно.

Максимальный допустимый пульс

Заключение

Сегодня мы с вами узнали, что такое пульсовые зоны. Эти знания помогут вам подходить к тренировкам более осмысленно. Помните, что здоровье сердца не менее важно, нежели красивый внешний вид, поэтому о нем стоит заботиться!

fb.ru

4.5.6. Интенсивность физических нагрузок. Зоны интенсивно­сти нагрузок по частоте сердечных сокращений

Под интенсивностью физической нагрузки подразумевается мощ­ность и напряженность мышечной работы, она может определяться по ЧСС. Обычно ЧСС измеряется сразу после выполнения упражнения или во время остановки и подсчитывается в течение 10 с. Полученная цифра умножается на 6, чтобы определить ЧСС за одну минуту. Если задание выполняется длительное время, для контроля за поддержанием интенсив­ности ЧСС подсчитывается несколько раз.

Рекомендуется придерживаться следующей градации интенсивно­сти:

1. Малая интенсивность (нулевая зона интенсивности, компенса-торная) - ЧСС до 130 ударов в минуту. При этой интенсивности эффектив-ного воздействия на организм не происходит, однако, создаются для этого

существенные предпосылки: расширяется сеть кровеносных сосудов в скелетных мышцах и в сердечной мышце, а также активизируется дея­тельность других функциональных систем организма (более подробно см в гл.2). В связи с этим рубеж 130...140 уд/мин назван порогом готовности Нулевая зона интенсивности используется как зона отдыха и восстановле­ния.

2. Средняя интенсивность (первая тренировочная зона, аэробная) - ЧСС от 130 до 150 уд/мин. Работа в этой зоне интенсивности обеспечива­ется аэробными механизмами энергообеспечения, когда энергия вырабаты­вается в организме при достаточном притоке кислорода с помощью окис­лительных реакций, поэтому она наиболее типична для начинающих спортсменов.

3. Большая интенсивность (вторая тренировочная зона, смешан­ная) - ЧСС от 150 до 180 уд/мин. Во второй тренировочной зоне к аэроб­ным механизмам подключаются анаэробные механизмы энергообеспече­ния, когда энергия образуется при распаде энергетических веществ в усло­виях недостатка кислорода.

Субъективно при работе в анаэробных условиях занимающиеся сравнительно быстро ощущают сильное утомление, так как рубеж 150 уд/мин является близким к порогу анаэробного обмена (ПАНО), когда про­исходит переход механизма энергообеспечения от аэробного к анаэробно­му, который является одним из критериев тренированности. Если ПАНО наступает при ЧСС 130-140 уд/мин, это свидетельствует о низком уровне физической тренированности, тогда как уровень ПАНО, равный 160-165 уд/мин, характеризует высокую степень тренированности.

4. Предельная интенсивность - ЧСС 180 уд/мин и более (анаэроб­ная зона). В этой зоне интенсивности совершенствуются анаэробные меха­низмы энергообеспечения.

Нагрузки большой и предельной интенсивности можно рекомен­довать только физически тренированным лицам в возрасте от 16 до 35 лет, не имеющим отклонений в состоянии здоровья. Лицам, имеющим отклонения в состоянии здоровья, отнесенным при медицинском осви­детельствовании к специальной медицинской группе, к выбору величины интенсивности тренировочной нагрузки необходимо подходить особенно осторожно, начинать тренироваться с применением нагрузок малой интен­сивности и только при хорошем самочувствии и положительных данных врачебного контроля и самоконтроля переходить к нагрузкам более высо­кой зоны интенсивности.

Исследованиями установлено, что минимальная интенсивность по ЧСС, которая дает тренировочный эффект, для лиц 20 лет - 134 уд/мин.

Учитывая наличие максимальных и минимальных величин интен­сивности по ЧСС, можно определить зоны оптимальных и больших нагру­зок при проведении тренировочных занятий. Например, для 20-летних за­нимающихся оптимальной зоной будет диапазон ЧСС 150...177 уд/мин, зоной больших нагрузок - 177...220 уд/мин; для 25-летних занимающихся

соответственно - 145...172 и 172...195 уд/мин и т.д.

studfiles.net

Частота сердечных сокращений (ЧСС) — SportWiki энциклопедия

Частота сердечных сокращений[править]

Средняя частота сердечных сокращений в состоянии покоя составляет 60-80 ударов в минуту и иногда может превышать 100 ударов в минуту у людей средних лет, ведущих сидячий образ жизни. Известно, что у тренированных выносливых атлетов, находящихся в хорошей форме, минимальная частота сердечных сокращений в состоянии покоя составляет 28-40 ударов в минуту.

Рис. 4. Частота сердечных сокращений увеличивается пропорционально увеличению нагрузки на велосипедном эргометре, в конечном счете достигая максимального значения (ЧССmах). У нетренированных людей она увеличивается быстрее, чем у хорошо натренированных. У тренированного человека линейное увеличение с ростом нагрузки выглядит более явным

Перед началом физической нагрузки частота сердечных сокращений обычно увеличивается, намного превышая нормальные показатели в состоянии покоя. Как упоминалось выше, эта упреждающая реакция, вероятно, возникает благодаря выделению нейромедиатора норадреналина симпатической нервной системой и гормона адреналина надпочечниками. Тонус блуждающего нерва, возможно, также снижается.

Увеличение частоты сердечных сокращений почти пропорционально увеличению интенсивности физической нагрузки и потреблению кислорода вплоть до полного изнеможения (рис. 4). Чем меньше натренирован человек, тем выше частота сердечных сокращений. К увеличению частоты сердечных сокращений во время физической нагрузки приводят уменьшение тонуса блуждающего нерва и увеличение симпатической стимуляции сердца. Нужно также помнить, что психогенное увеличение частоты сердечных сокращений может быть значительным.

Начиная с возраста 10-15 лет максимальная частота сердечных сокращений начинает незначительно, но стабильно снижаться -примерно на 1 удар в год. Это - очень надежная величина, которая остается неизменной изо дня в день. У взрослых максимальную частоту сердечных сокращений можно вычислить следующим образом:

ЧССмах = 220 минус возраст в годах

При постоянном уровне субмаксимальной нагрузки частота сердечных сокращений увеличивается, а затем выравнивается, поскольку потребность в кислороде для этой деятельности была удовлетворена. При каждом последующем увеличении интенсивности частота сердечных сокращений достигнет новой установившейся величины в пределах 1-2 мин. Однако чем интенсивнее физическая нагрузка, тем больше уходит времени на достижение этой установившейся величины.

Понятие установившейся частоты сердечных сокращений представляет собой основу для нескольких тестов, разработанных для оценки физической подготовки. При этих тестах людей помещают на тренажер, например, велоэргометр или бегущую дорожку, и они тренируются при стандартных уровнях нагрузки. У тех, чья физическая подготовка лучше, судя по их кардиореспираторной выносливости, установившаяся частота сердечных сокращений на данном уровне нагрузки будет ниже, чем у менее тренированных людей.

Во время длительной физической нагрузки, вместо выравнивания, частота сердечных сокращений может продолжить устойчиво увеличиваться при том же уровне нагрузки. Это явление называют кардиоваскулярным сдвигом, который вызван уменьшением венозного возврата к сердцу. Частота сердечных сокращений продолжает увеличиваться, чтобы сохранить минутный объем сердца (сердечный выброс) и кровяное давление на том же самом уровне, несмотря на уменьшение венозного возврата. Уменьшить венозный возврат может сокращение объема плазмы, вызванное фильтрацией жидкости из крови или избыточным потоотделением во время длительной физической нагрузки. Уменьшение тонуса симпатической нервной системы может также сыграть свою роль в уменьшении венозного возврата к сердцу.

Во время силовых упражнений, например, при поднятии тяжестей, частота сердечных сокращений ниже, чем во время физической нагрузки на выносливость, такой как бег. При одинаковом произведенном усилии при физической нагрузке на верхнюю часть тела ЧСС выше, чем при нагрузке на нижнюю. Физическая нагрузка на верхнюю часть тела приводит также к более высокому потреблению кислорода, среднему артериальному давлению и общему периферическому сопротивлению сосудов. Более высокая нагрузка на кровообращение при тренировке верхней части тела является результатом меньшей мышечной массы, повышенного внутригрудного давления и меньшей эффективности «мышечного насоса» - все это уменьшает венозный возврат крови к сердцу.

Частота сердечных сокращений, умноженная на систолическое кровяное давление,дает произведение ЧСС на давление (ПЧД), которое позволяет оценить нагрузку на сердце во время физической нагрузки:

ПЧД — ЧСС х систолическое кровяное давление

Влияние физической нагрузки на частоту сердечных сокращений[править]

Частота сердечных сокращений при неутомительной и изматывающей физической нагрузке. При неутомительной нагрузке сердечные сокращения выходят на фазу плато; при изматывающей нагрузке отмечается постоянное повышение частоты сердечных сокращений

Помимо изменения дыхания при увеличении нагрузки также происходят изменения в сердечно-сосудистой системе и повышаются частота сердечных сокращений, артериальное давление и минутный объем кровообращения (объем сердечного выброса за 1 мин). При выполнении работы, не ведущей к утомлению, частота сердечных сокращений достигает фазы плато (устойчивое состояние). При утомительной или изматывающей физической нагрузке этот показатель не выходит на плато, а демонстрирует постоянное повышение частоты сердечных сокращений (что отражает накапливающееся утомление) (рис.).

Так называемые параметры сердечно-сосудистой системы повышаются в линейной зависимости от величины физической нагрузки, что дает возможность оценить пределы нагрузки у исследуемых лиц/пациентов. С помощью многократного измерения параметров при субмаксимальной нагрузке строят приблизительную линию максимальной физической нагрузки (линия наилучшего соответствия). Примером теста субмаксимальной нагрузки является тест PWC170 (Physical Working Capacity — физическая работоспособность), при котором измеряется частота сердечных сокращений при постепенном повышении нагрузки до приближения, но недостижения границы в 170 ударов в минуту. Нормальным значением PWC170 для нетренированных мужчин считается 3,0 Вт/кг, а для нетренированных женщин — 2,5 Вт/кг. У тренированных лиц это значение приближается к 4 Вт/кг, что соответствует мощности нагрузки, при которой обычно регистрируется максимальное потребление кислорода (МПК).

Использование ЧСС для направленного развития двигательных качеств (на примере определения точки отклонения по Конкони)[править]

Наиболее доступным и информативным методом оценки реакции организма на физические нагрузки является ЧСС. Ее определяют перед занятием, после разминки, после выполнения отдельных упражнений в основной части занятия, после отдыха или периодов снижения интенсивности нагрузки (Белоцерковский, 2005; Булич, Муравов, 2003; Втмор, Косттл, 2003; Круцевич, 1999; Мищенко В. С., 1990; Применение пульсометрии..., 1996).

Сегодня в большинстве видов спорта тренеры планируют объем и интенсивность тренировочных нагрузок не только в часах, метрах, но и по ЧСС, определяемой при данной работе (табл. 57, 58).

Сравнивая характер и интенсивность нагрузки по изменению ЧСС и скорости ее восстановления, определяют уровень функционального состояния организма. Например, если после пробегания 400 м за 70 с пульс у спортсмена участился до 160 уд*мин-1 и восстановился за 2 мин до 120 уд-мин-1, а затем после такой же нагрузки повысился до 150 уд-мин-1 и восстановился за 3 мин, есть основания говорить об ухудшении функционального состояния сердечнососудистой системы.

Таблица 57 - Характеристика тренировочных процессов по зонам интенсивности (Платонов, 2004)

Зона интенсивности

Направленность физической нагрузки

Реакция организма

ЧСС, уд мин-1

Лактат, ммоль-л-1

I (восстановительная)

Активизация восстановительных процессов

100—120

2—3

II (поддерживающая)

Поддержка на достигнутом уровне аэробных процессов

140—150

3—4

III (развивающая)

Повышение аэробных возможностей, специальной выносливости к продолжительной работе

165—175

4—8

IV (развивающая)

Повышение гликолитических возможностей, специальной выносливости к кратковременной работе (скоростная выносливость)

175—185

8—12

V (спринтерская)

Повышение алактатних анаэробных возможностей, совершенствование скоростных возможностей

185 и выше

> 12

Таблица 58 — Характеристика тренировочных режимов разной направленности

Направленность тренировочного занятия

Количество серий упражнений

Продолжительность серии, мин

Интервал между упражнениями в 1 серии, с

Интервал между сериями

ЧСС во время работы, уд-мин-1

ЧСС перед выполнением очередной серии

Энергетические системы

Содержание молочной кислоты, ммоль-1

Совершенствование скоростных возможностей

7

6—7

20 1,5— 2 мин

От 185 и выше

125

Алактатная (фосфагенная) + лактатная (гликолитическая)

10

Развитие специальной (скоростной) выносливости

8—9

8

10— 40— 15 60 с

175— 185

135— 140

Алактатная (фосфагенная) + лактатная (гликолитическая)

8—12

Развитие общей выносливости

8—9 (до 10)

8

до 30 3—

4 мин

1 eons

110— 115

Аэробная (окислительная) +лактатная (гликолитическая)

4—8

У хорошо тренированных спортсменов ЧСС снижается в течение 60—-90 с с 180 до 120 уд-мин-1. В этом случае они готовы к повторному выполнению упражнения. Отставленный эффект физических нагрузок можно оценить по изменению ЧСС на следующее утро натощак.

Рисунок 11 — Схематическое изображение принципа метода Конкони

В последнее время в практике контроля в спорте распространился метод Конкони (Применение пульсометрии..., 1996), позволяющий определить величину ЧСС, которая соответствует максимальному, преимущественно аэробному, энергообеспечению без громоздких исследовательских процедур, связанных с анализом проб крови и воздуха. Тест Конкони базируется на том, что при определенной интенсивности выполнения работы линейная зависимость между интенсивностью работы и ЧСС нарушается и можно графически выявить индивидуальную точку отклонения (нарушение линейности). ЧСС, которая отмечается в этой точке, указывая на максимальный уровень интенсивности нагрузки, обеспечиваемой преимущественно аэробным путем. Выше этого уровня прогрессивно включаются анаэробные механизмы и наступает утомление (см. рис. 11).

Точка отклонения, по Конкони, близка к физиологическому понятию ПАНО, характеризующему предельную интенсивность нагрузки, при которой работа может выполняться относительно продолжительное время в устойчивом состоянии, без прогрессивного наращивания концентрации лактата в крови (Лактатный порог..., 1997; Симонова, 2001).

ЧСС точки отклонения индивидуальна и связана с состоянием спортсмена, уровнем тренированности, периодом годового цикла подготовки. Во всех случаях, исследуя ЧСС точки отклонения для определения интенсивности нагрузок, выбранных в качестве основных тренировочных средств, необходимо проводить тест Конкони для каждого спортсмена не менее одного раза в 3—4 недели.

Рисунок 12—График Сен Гупта для определения ориентировочно возможного времени непрерывной работы спортсменов циклических видов спорта в режиме заданной ЧСС (Применение пульсометрии..., 1996)

Определив ЧСС точки отклонения по тесту Конкони, следует определить необходимое время, в течение которого целесообразно выполнять нагрузки по установленной ЧСС. Это время можно определить, пользуясь формулой Карвоненна и графиком Сен Гупта (рис. 12). Формула Карвоненна (Применение пульсометрии..., 1996):

X%=(ЧССнагрузки - ЧССсостояния покоя * 100)/ (ЧССмаксимальная - ЧССсостояния покоя)

где Х% — интенсивность нагрузки.

Значения величины X % по формуле Карвоненна откладывают на оси абсцисс графика Сен Гупта и из этой точки проводят перпендикуляр до пересечения с нанесенной на шкалу наклоненной линией. Напротив полученной точки по оси ординат находят соответствующее время, ориентировочно возможное для непрерывной работы спортсменов — представителей циклических видов спорта — в заданном режиме ЧСС.

Оснащение: спорттестер.

Ход работы

Испытуемый выполняет тест Конкони (с использованием программного обеспечения спорттестера) в выбранных условиях: на беговой дорожке стадиона, в бассейне, на велотреке, беговой дорожке в природных условиях, где длина, рельеф и метеорологические условия каждого отрезка будут примерно одинаковы. Выполняя тест Конкони, спортсмен равномерно увеличивает скорость. В это время у него измеряют ЧСС, что позволяет получить графическую зависимость «скорость—ЧСС». В начале выполнения теста это соотношение имеет линейную зависимость, а затем учащение ЧСС замедляется. В этот момент (точка отклонения) достигается анаэробный порог. Тест продолжается до тех пор, пока не будет получена максимальная величина ЧСС. Для хорошо тренированных спортсменов подходят отрезки длиной 200—400 м. Для достижения максимальных значений ЧСС достаточно 10—20 отрезков, но не менее 8. Главное условие, которое следует соблюдать, — это постепенное увеличение скорости на каждом последующем отрезке и поддержание ее на постоянном уровне в пределах отрезка.

Тест Конкони проводят так:

  1. Слорттестер следует установить в режим измерения ЧСС с 5-секундным интервалом регистрации данных.
  2. Следует нажимать кнопку STOPE/RECALL после прохождения каждого отрезка дистанции в одном месте. Целесообразно визуально удостовериться в том, что на дисплее регистрируется время прохождения каждого отрезка.
  3. Необходимо увеличивать скорость на отрезках постепенно, иначе возможно наступление утомления до того, как будут пройдены все минимально необходимые отрезки.
  4. Заканчивать тест следует после достижения максимальной ЧСС или околомаксимальной.

На основании полученных значений строят графическую зависимость «скорость—ЧСС», определяют точку отклонения по Конкони и делают выводы об индивидуальном ПАНО испытуемого. Используя данные теоретического вступления к работе, находят по графику Сен Гупта ориентировочно возможное время работы при ЧСС точки отклонения испытуемого (Симонова, 2001; Применение пульсометрии..., 1996; Физиологическое тестирование спортсменов..., 1998).

sportwiki.to

Частота сердечных сокращений (ЧСС) во время тренировки

Конспект по мотивам «ЧСС, лактат и тренировки на выносливость» (Янсен Петер)

В спорте частоту сердечных сокращений (ЧСС) используют для оценки интенсивности нагрузки. Существует линейная зависимость между ЧСС и интенсивностью нагрузки (График 13).

grafik_13

Тренировка на выносливость должна выполняться в так называемой аэробно-анаэробной зоне, когда задействована вся кислородно-транспортная система. При такой интенсивности накопления молочной кислоты не происходит. Граница аэробно-анаэробной зоны у разных людей находится между 140 и 180 уд/мин. Часто тренировки на выносливость выполняются при пульсе 180 ударов в минуту. Для многих спортсменов этот пульс значительно превышает аэробно-анаэробную зону.

Методы подсчета ЧСС

ЧСС подсчитывают на запястье (запястная артерия), на шее (сонная артерия), на виске (височная артерия) или на левой стороне грудной клетки.

Метод 15-ти ударов

Необходимо нащупать пульс в любой из указанных точек и включить секундомер во время удара сердца. Затем начинают подсчет последующих ударов и на 15 ударе останавливают секундомер. Предположим, что в течение 15 ударов прошло 20,3 секунд. Тогда количество ударов в минуту будет равно: (15 / 20,3) х 60 = 44 уд/мин.

Метод 15-ти секунд

Это менее точный. Спортсмен считает удары сердца в течение 15 секунд и умножает количество ударов на 4, чтобы получить количество ударов в минуту. Если за 15 с было насчитано 12 ударов, то ЧСС равна: 4 х 12 = 48 уд/мин.

Подсчет ЧСС во время нагрузки

Во время нагрузки ЧСС измеряется с помощью метода 10-ти ударов. Секундомер нужно запустить во время удара (это будет «удар 0»).  На «ударе 10» следует остановить секундомер. ЧСС можно определить по таблице 2.1.  Сразу после прекращения нагрузки ЧСС быстро снижается. Поэтому ЧСС, подсчитаный методом 10-ти ударов, будет немного ниже реальной ЧСС во время нагрузки.

Таблица 2.1. Метод 10-ти ударов.

Время, с ЧСС, уд/мин Время, с ЧСС, уд/мин Время, с ЧСС, уд/мин

3,1

194

4,1

146

5,1

118

3,2

188

4,2

143

5,2

115

3,3

182

4,3

140

5,3

113

3,4

177

4,4

136

5,4

111

3,5

171

4,5

133

5,5

109

3,6

167

4,6

130

5,6

107

3,7

162

4,7

128

5,7

105

3,8

158

4,8

125

5,8

103

3,9

154

4,9

122

5,9

102

4,0

150

5,0

120

6,0

100

Основные показатели ЧСС

Для расчета интенсивности тренировки и для контроля за функциональным состоянием спортсмена используют ЧСС в покое, максимальную ЧСС, резерв ЧСС и ЧСС отклонение.

ЧСС в покое

У нетренированных людей ЧССпокоя 70-80 уд/мин. При увеличение аэробных способностей ЧССпокоя снижается. У хорошо подготовленных спортсменов на выносливость (велосипедистов, бегунов-марафонцев, лыжников) ЧССпокоя может составлять 40-50 уд/мин. У женщин ЧССпокоя на 10 ударов выше, чем у мужчин того же возраста. Утром ЧССпокоя на 10 ударов ниже, чем вечером. У некоторых людей бывает наоборот.

ЧССпокоя подсчитывают утром перед подъемом с постели, чтобы гарантировать точность ежедневных измерений. По утреннему пульсу нельзя судить о степени подготовленности спортсмена. Однако ЧСС в покое дает важную информацию о степени восстановления спортсмена после тренировки или соревнований. Утренний пульс повышается в случае перетренированности или инфекционного заболевания (простуда, грипп) и снижается по мере улучшения физического состояния. Спортсмен должен записывать утреннюю ЧСС (График 14).

График 14

Максимальная ЧСС

Максимальная частота сердечных сокращений (ЧССмакс) — это максимальное количество сокращений, которое сердце может совершить за 1 минуту. Максимальная ЧСС может сильно варьировать у разных людей.

После 20 лет ЧССмакс постепенно снижаться — примерно на 1 удар в год. ЧССмакс высчитывают по формуле: ЧССмакс = 220-возраст. Эта формула не дает точных результатов.

ЧССмакс не зависит от уровня работоспособности спортсмена. ЧССмакс остается неизменной после периода тренировок. В редких случаях у хорошо тренированных спортсменов ЧССмакс незначительно снижается под влиянием тренировок (График 15).

График 15

ЧССмакс можно достичь только при хорошем самочувствие. Необходимо полное восстановление после последней тренировки. Перед тестом спортсмен должен хорошо размяться. За разминкой следует интенсивная нагрузка продолжительностью 4-5 минут. Заключительные 20-30 секунд нагрузки выполняются с максимальным усилием. При выполнении максимальной нагрузки с помощью монитора сердечного ритма определяют ЧССмакс. Подсчет пульса вручную не дает точных результатов из-за быстрого снижения ЧСС сразу после нагрузки. Желательно определять ЧССмакс несколько раз. Самый высокий показатель будет являться максимальной ЧСС.

Спортсмен может достигать 203 уд/мин во время бега, но при педалировании — только 187 уд/мин. Рекомендуется измерять ЧССмакс для каждого вида активности.

Целевая ЧСС — это ЧСС, при которой следует выполнять нагрузку. При ЧССмакс 200 уд/мин целевая ЧСС для тренировочной интенсивности 70% ЧССмакс будет равна: ЧССцелевая = 0,7 х ЧССмакс = 0,7 х 200 = 140 уд/мин.

Таблица 2.2. Зоны интенсивности тренировочных нагрузок в процентном отношении от ЧССмакс.

Зоны интенсивности Интенсивность (% от ЧССмакс)

Восстановительная зона (R)

60-70

Аэробная зона 1 (А1)

70-80

Аэробная зона 2 (А2)

80-85

Развивающая зона 1 (Е1)

85-90

Развивающая зона 2 (Е2)

90-95

Анаэробная зона 1 (Аn1)

95-100

Резерв ЧСС

Для расчета интенсивности нагрузки используют также метод резерва ЧСС, который был разработан финским ученым Карвоненом. Резерв ЧСС — это разница между ЧССмакс и ЧССпокоя. У спортсмена с ЧССпокоя 65 уд/мин и ЧССмакс 200 уд/мин резерв ЧСС будет равен: ЧССрезерв = ЧССмакс-ЧССпокоя = 200-65 = 135 уд/мин.

Целевая ЧСС высчитывается как сумма ЧССпокоя и соответствующего процента от резерва ЧСС. Например, целевая ЧСС для интенсивности 70% от резерва ЧСС для того же спортсмена будет равна: ЧССцелевая = ЧССпокоя + 70% ЧССрезерв = 65 + (0,7 х 135) = 65 + 95 = 160 уд/мин.

Таблица 2.3. Зоны интенсивности тренировочных нагрузок в процентном отношении от ЧССрезерв.

Зоны интенсивности Интенсивность (% от ЧССмакс)

Восстановительная зона (R)

40-55

Аэробная зона 1 (А1)

55-70

Аэробная зона 2 (А2)

70-78

Развивающая зона 1 (Е1)

78-85

Развивающая зона 2 (Е2)

85-93

Анаэробная зона 1 (Аn1)

93-100

Зная ЧССпокоя и ЧССмакс, можно высчитать интенсивность выполняемого упражнения по другой формуле Карвонена: Интенсивность нагрузки = (ЧСС во время нагрузки-ЧССпокоя)/(ЧССмакс-ЧССпокоя)*100%.

У двух спортсменов, бегущих с одинаковой скоростью, может быть разная ЧСС. Однако неверно было бы утверждать, что спортсмен, у которого ЧСС выше, подвергается большей нагрузке. Например, у одного бегуна ЧССмакс составляет 210 уд/мин, тогда как его пульс во время бега был равен 160 уд/мин (на 50 ударов ниже ЧССмакс). Максимальная ЧСС другого бегуна составляет 170 уд/мин, а его пульс во время бега с той же скоростью был равен 140 уд/мин (на 30 ударов ниже ЧССмакс). Если у бегунов одинаковая ЧССпокоя — 50 уд/мин, то мощность их нагрузки в процентном отношении составляла 69 и 75% соответственно, а значит второй бегун испытывает большую нагрузку.

Точка отклонения

При высокой интенсивности нагрузки линейная зависимость между ЧСС и интенсивностью нагрузки пропадает. ЧСС с определенной точки начинает отставать от интенсивности. Это точка отклонения (ЧССоткл.) На прямой линии, отображающей данную зависимость, появляется заметный изгиб (График 16).

График 18

Точка отклонения указывает на максимальную интенсивность работы при которой энергообеспечение идет исключительно за счет аэробного механизма. Далее включается анаэробный  механизм. Точка отклонения соответствует анаэробному порогу. Любая нагрузка с интенсивностью, превышающей ЧССоткл, приводит к накоплению молочной кислоты. У хорошо тренированных спортсменов на выносливость диапазон ЧСС, внутри которого энергия поставляется аэробным путем, очень большой.

Функциональные изменения и ЧСС

Под действием тренировок повышается работоспособность спортсмена, что отражается на функциональных показателях тренированности организма.

Сдвиг точки отклонения

Самым важным изменением при регулярных тренировках на выносливость является сдвиг точки отклонения в сторону более высокой ЧСС.

Например, у нетренированного человека ЧССоткл составляет 130 уд/мин. После периода тренировок на выносливость его ЧССоткл сдвигается с 130 к 180 уд/мин (График 15 смотри выше). Это означает, что его аэробные способности повысились и теперь он может выполнять длительную нагрузку при более высокой ЧСС.

Смещение лактатной кривой

Зависимость между ЧСС и уровнем лактата варьируется среди людей и может изменяться у одного и того же человека по мере изменения его функционального состояния.

График 17 У нетренированного человека ЧССоткл равна 130 уд/мин, а у тренированного 180 уд/мин. Нетренированный  человек способен выполнять работу в течение длительного времени при ЧСС 130 уд/мин, а тренированный при ЧСС 180 уд/мин. Этот рубеж называется анаэробным порогом и соответствует уровню молочной кислоты 4 ммоль/л. Нагрузка, превышающая анаэробный порог, ведет к резкому повышению молочной кислоты в организме.

График 17

Увеличение МПК

МПК (максимальное потребление кислорода) — это наибольшее количество кислорода, которое человек способен потребить во время нагрузки максимальной мощности. МПК выражается в литрах в минуту (л/мин). Во время нагрузки на уровне МПК энергообеспечение организма осуществляется аэробным и анаэробным путями. Поскольку анаэробное энергообеспечение не безгранично, интенсивность нагрузки на уровне МПК не может поддерживаться долго (не более 5 мин). По этой причине тренировки на выносливость выполняются при интенсивностях ниже уровня МПК. Под воздействием тренировок МПК может вырасти на 30%. В норме между ЧСС и потреблением кислорода наблюдается линейная зависимость.

Таблица 2.4. Зависимость между ЧСС и потреблением кислорода.

% от ЧССмакс % от МПК
50 30
60 44
70 58
80 72
90 86
100 100

Поскольку нагрузка максимальной мощности может поддерживаться только в течение 5 мин, МПК не является характерным показателем функциональных возможностей спортсменов на выносливость. Наиболее подходящим критерием оценки функциональных способностей у спортсменов на выносливость служит анаэробный, или лактатный, порог.

Анаэробный порог соответствует максимальному уровню нагрузки, который спортсмен может поддерживать в течение длительного отрезка времени без накопления молочной кислоты. Анаэробный порог можно выразить в процентах от МПК или от ЧССмакс.

График 18. Правая вертикальная ось показывает сдвиг ЧССоткл после периода тренировок. До начала тренировок ЧССоткл составляла 130 уд/мин. После нескольких месяцев тренировок ЧССоткл выросла до 180 уд/мин. Левая вертикальная ось показывает прирост МПК, и особенно процента от МПК, или от ЧССмакс, при котором работа может поддерживаться в течение длительного отрезка времени.

График18

Факторы, влияющие на ЧСС

На ЧСС могут влиять многие факторы. Спортсмены и тренеры должны учитывать эти факторы при планировании тренировок и выступлений в соревнованиях.

Возраст

С возрастом ЧССмакс постепенно снижается. Это снижение не имеет определенной связи с функциональным состоянием человека. В 20 лет ЧССмакс может составлять 220 уд/мин. В 40 лет ЧССмакс часто не превышает 180 уд/мин. Среди людей одинакового возраста наблюдается довольно большая разница в ЧССмакс. Пределом одного 40-летнего спортсмена может быть 165 уд/мин, тогда как ЧССмакс другого спортсмена того же возраста может составлять 185 уд/мин. Между ЧССмакс и возрастом наблюдается прямолинейная зависимость (см. графики 19 и 20).

График 19-20С возрастом происходит не только прямолинейное снижение ЧССмакс, но и такое же прямолинейное снижение других показателей: ЧССпокоя, ЧССоткл, анаэробного порога. Вертикальными полосами на графике 19 отмечены возможные различия между людьми одинакового возраста.

Недовосстановление и перетренированность

При полном восстановлении спортсмена его показатели ЧСС — ЧССмакс, ЧССоткл и ЧССпокоя — достаточно постоянны.

На следующий день после интенсивной тренировки или соревнований утренний пульс может быть повышенным, что указывает на недостаточное восстановление организма. Другими показателями недовосстановления являются сниженные ЧССоткл и ЧССмакс. При наличии таких показателей разумнее всего отказаться от интенсивных тренировок, чтобы дать организму возможность восстановиться. Тренировки снизят функциональные возможности.

В зависимости от типа перетренированности утренний пульс может быть либо высоким, либо очень низким. Пульс 25 уд/мин — не исключение. Обычно во время упражнения ЧСС очень быстро повышается до максимальных величин, но в случае перетренированности ЧСС может отставать от интенсивности выполняемого упражнения. ЧССмакс при перетренированности достичь уже невозможно.

График 21, 22 и 23. Велосипедист хорошо отдохнул перед гонками 1 и 3 — он чувствовал себя хорошо во время гонок, достигая в обеих из них максимальной ЧСС. В гонке 2 он участвовал при недостаточном восстановлении. Велосипедист испытывал боль в ногах и ЧССмакс не была достигнута.

График 21 22 23

Важно!!! Данные ЧСС, регистрируемые у спортсменов во время многодневки «Тур де Франс», показали отчетливое снижение ЧССмакс и ЧССоткл. Во время «Тур де Франс» весь пелотон находится в стадии перетренированности или, по крайней мере, недовосстановления.

Когда утренний пульс высокий, а ЧСС, соответствующая обычной аэробной нагрузке, не может быть достигнута или достигается ценой неимоверных усилий, лучшее решение — это полный отдых или восстановительная тренировка.

ЧСС ниже 50 уд/мин у спортсмена — это признак тренированного сердца. Во время сна ЧСС может падать до 20-30 уд/мин. Низкая ЧСС — нормальная адаптация организма к предельным нагрузкам на выносливость, которая не является опасной. Низкую ЧСС компенсирует ударный объем сердца. Если у спортсмена нет жалоб на здоровье и тесты показывают адекватное повышение ЧСС, такое состояние не требует лечения.

Но если спортсмен жалуется на головокружение и слабость, необходимо более серьезно заняться этим вопросом. В таком случае очень низкая ЧСС может указывать на болезни сердца. Очень важно уметь различать две эти ситуации.

Питание

Питание может улучшить физическую работоспособность спортсменов на выносливость. При обычном питании у десяти испытуемых во время выполнения аэробной нагрузки средняя ЧСС составляла 156 ± 10 уд/мин, тогда как после приема 200 г углеводов при той же самой нагрузке средняя ЧСС была равна 145 ± 9 уд/мин (График 24).

График 24

Высота

В первые часы на высоте ЧССпокоя снижается, но затем снова повышается. На высоте 2000 м ЧССпокоя увеличивается на 10%, а на высоте 4500 м — на 45%. Через несколько дней ЧСС снова снижается до нормальных значений или падает ниже этих значений. Возвращение к нормальному показателю указывает на хорошую акклиматизацию.

Отслеживать степень акклиматизации может каждый человек. Рекомендуется записывать показания утреннего пульса в течение нескольких недель до отъезда и во время пребывания на новой высоте.

График 25. Схема акклиматизации спортсмена к высоте.

График 25

Лекарственные средства

Бета-блокаторы снижают ЧССпокоя и ЧССмакс, а также на 10% снижают аэробные способности. В некоторых видах спорта бета-блокаторы используются как средства, повышающие работоспособность. Считается, что бета-блокаторы благотворно влияют на стрельбу, поскольку уменьшают дрожание рук. Кроме того, редкая ЧСС в меньшей степени мешает прицеливанию.

Нарушение суточного ритма

Большинство процессов в организме находятся под влиянием суточного ритма. Когда спортсмен переезжает из одной временной зоны в другую, суточный ритм (биоритм) его организма нарушается. Переезд в сторону запада переносится легче, чем в восточном направлении. Нарушение суточного ритма неблагоприятно влияет на работоспособность. Рекомендуется на каждый час разницы во времени затрачивать один день акклиматизации. Например, при разнице во времени 7 часов требуется недельный период адаптации.

Можно начать адаптацию заранее — ложиться спать раньше или позже обычного. По прибытию нужно следовать новому распорядку дня. Короткие сны в дневное время замедляют адаптацию.

В период акклиматизации ЧССпокоя и ЧСС во время нагрузки повышены. Когда ЧСС опустится до нормального уровня, значит адаптация завершилась, и спортсмен может вернуться к своим обычным тренировкам.

Инфекционные заболевания

Спортсмены не редко продолжают выполнять свои обычные тренировки, поскольку недооценивают симптомы болезни или боятся отстать в подготовке из-за отдыха. Люди других профессий могут продолжать работать при сильной простуде. Но даже легкая простуда снижает спортивную работоспособность на 20%.

Важно!!! Спортсменам рекомендуется отдых и резкое снижение тренировочной нагрузки при инфекционных заболеваниях. Только в этом случае у организма есть шанс полностью восстановиться. При наличии температуры какая-либо спортивная деятельность категорически запрещается.

При подъеме температуры на 1°С ЧСС увеличивается на 10-15 уд/мин. В период восстановления после инфекционного заболевания ЧССпокоя также повышена.

Для контроля за состоянием работоспособности рекомендуется регулярно проводить функциональные пробы. Можно использовать простой тест на тредбане или велоэргометре состоящий из 3 серий по 10 минут, где нагрузка выполняется при постоянном пульсе — 130, 140 и 150 уд/мин. Во время теста регистрируется преодоленная дистанция и скорость. При инфекции функциональная проба будет показывать снижение работоспособности — уменьшение дистанции/скорости.

После перенесенного инфекционного заболевания спортсмену следует выполнять только восстановительные нагрузки или легкие аэробные тренировки. Когда работоспособность вернется к норме, на что будет указывать функциональный тест, продолжительность и интенсивность занятий можно будет постепенно увеличивать.

Эмоциональная нагрузка

Эмоциональный стресс влияет на ЧСС. Тяжелая умственная работа может вызывать чрезмерное напряжение. Если такая работа выполняется в шумной обстановке или после бессонной ночи, пагубное воздействие на организм оказывается еще более сильным.

Температура и влажность воздуха

График 26. Динамика ЧСС во время полумарафонского бега 43-летнего бегуна с ЧССоткл 175 уд/мин. В первые 40 минут было сухо, температура воздуха 16°С. Эта часть дистанции пройдена на уровне чуть ниже ЧССоткл. На 35 минуте пошел проливной дождь и температура упала. Бегуну было очень холодно, он не мог поддерживать ЧСС на том же высоком уровне, что сказалось на скорости бега.

График 26

График 27. Влияние меняющейся температуры окружающей среды на ЧСС гребца в состоянии покоя.

График 27

График 28. Высокая температура и высокая влажность воздуха приводят к повышению ЧСС в сауне.

График 28

Физическая активность зависит от сложных химических реакций в мышечных и нервных тканях. Эти химические реакции очень чувствительны к колебаниям внутренней температуры тела. При высокой температуре тела химические процессы протекают быстрее, при низкой — медленнее.

Для нагрузки разной продолжительности и интенсивности существуют наиболее оптимальные температура окружающей среды и влажность воздуха. Считается, что наиболее благоприятной для спортсменов на выносливость является температура до 20°С. Более высокие температуры — от 25 до 35°С — благоприятны для спринтеров, метателей и прыгунов, которым нужна взрывная сила.

В покое организм вырабатывает около 4,2 кДж (1 ккал) на кг массы в час, во время физической нагрузки — до 42-84 кДж (10-20 ккал) на кг в час. При высокой температуре тела повышается кровообращение в коже, увеличивается выработка пота, что приводит к увеличению ЧСС. При одинаковой интенсивности упражнения, но разной температуре тела 37 и 38°С, разница в ЧСС составляет 10-15 уд/мин. При высокой интенсивности и продолжительности нагрузки, а также высокой температуре и влажности воздуха, температура тела может достигать 42°С.

При температуре тела выше 40°С может произойти тепловой удар. Причины возникновения теплового удара во время физической нагрузки: высокая температура окружающей среды, высокая влажность воздуха, недостаточная вентиляция тела и потери жидкости за счет потоотделения и испарения.

В жару после 1-2 часов нагрузки потери жидкости могут составить от 1 до 3% массы тела. Когда потери жидкости превышают 3% от массы тела, снижается объем циркулирующей крови, уменьшается доставка крови к сердцу, растет ЧСС, возрастает вероятность развития жизнеугрожающей ситуации.

Важно!!! Важно возмещать потери жидкости во время нагрузки, выпивая по 100-200 мл воды через короткие промежутки времени.

График 29. Динамика ЧСС во время аэробной нагрузки на уровне 70% МПК в условиях полного отказа от питья и при приеме 250 мл жидкости через каждые 15 минут. Температура воздуха 20°С. Тест прекращали при полном изнеможение спортсмена. При отказе от питья наблюдалась более высокая ЧСС. Прием жидкости во время нагрузки удерживал ЧСС на постоянном уровне. Спортсмен мог выполнять упражнение на полчаса дольше.

График 29

Охлаждение в жарких условиях позволяет спортсмену дольше поддерживать нагрузку. Скорость велосипедиста выше, чем скорость бегуна, поэтому и охлаждение воздухом при передвижении на велосипеде гораздо выше. При низком темпе бега уменьшается обдув тела и повышаются потери жидкости. При охлаждении очень холодной водой может произойти спазм кровеносных сосудов, в результате чего нарушится теплоотдача. Лучший способ избежать преждевременного утомления при нагрузке в жарких условиях — регулярно пить и периодически смачивать тело влажной губкой.

График 30. Спортсмен дважды тестировался на велоэргометре с перерывом между тестами в 4 дня. Первый тест проводился без охлаждения, а во время второго теста тело охлаждали при помощи влажной губки и вентилятора. Другие условия в обоих тестах были идентичными: температура воздуха 25 °С, относительная влажность была постоянной, общая продолжительность велотеста 60 минут. В тесте без охлаждения ЧСС постепенно повысилась с 135 до 167 уд/мин. В тесте с охлаждением ЧСС прочно держалась на одном уровне 140 уд/мин.

График 30

Подробнее про тренировки в жару смотри Акклиматизация спортсмена в жарком и влажном климате.

diagnoster.ru

3.По интенсивности

Воздействие физических упражнений вызывает активную реакцию его функциональных систем. Чтобы определить степень напряженности этих систем при нагрузке, используются показатели интенсивности, которые характеризуют реакцию организма на выполненную работу.

Таких показателей много: изменение времени двигательной реакции, частота дыхания, минутный объем потребления кислорода и т.д. Между тем наиболее удобный и информативный показатель интенсивности нагрузки, особенно в циклических видах спорта, это частота сердечных сокращений (ЧСС). Чем больше нагрузка – тем выше ЧСС.

Относительная рабочая ЧСС (%ЧСС мах) – это выражение в процентах отношения ЧСС по время нагрузки и максимальной ЧСС для данного человека. Приближенно ЧСС мах можно рассчитать по формуле:

ЧСС мах = 220 – возраст человека (лет).

При определении интенсивности тренировочной нагрузки по ЧСС используются два показателя: пороговая и пиковая ЧСС.

Пороговая ЧСС – это наименьшая интенсивность, ниже которой тренировочный эффект не возникает. Пиковая ЧСС – это наибольшая интенсивность, которая не должна быть превышена в процессе тренировки. У здоровых людей показатели ЧСС могут быть следующие : пороговая – 75% и пиковая – 95% от ЧСС мах.

Индивидуальные зоны интенсивности нагрузок определяются с ориентацией именно на частоту сердечных, сокращений. Физиологи определяют четыре зоны интенсивности нагрузок по ЧСС (рис.1).

Рис. 1. Зоны интенсивности нагрузок по ЧСС

На рис. 1 представлены зоны интенсивности нагрузок при равномерной мышечной работе. Разделение нагрузок на зоны имеет в своей основе не только изменение ЧСС, но и различия в физиологических и биохимических процессах при нагрузках разной интенсивности. ПАНО – порог аэробного обмена.

Нулевая зона характеризуется аэробным процессом энергетических превращений при частоте сердечных сокращений до 130 ударов в мин для лиц студенческого возраста. При такой интенсивности нагрузки не возникает кислородного долга, поэтому тренировочный эффект может обнаружиться лишь у слабо подготовленных занимающихся. Нулевая зона может применяться в целях разминки при подготовке организма к нагрузке большей интенсивности, для восстановления (при повторном или интервальном методах тренировки) или для активного отдыха. Существенный прирост потребления кислорода, а, следовательно, и соответствующее тренирующее воздействие на организм происходит не в этой, а в первой зоне, типичной при воспитании выносливости у начинающих.

Первая тренировочная зона интенсивности нагрузки (от 130 до 150 удар/мин) наиболее типична для начинающих спортсменов, так как прирост достижений и потребление кислорода (с аэробным процессом его обмена в организме) происходит у них начиная с ЧСС, равной 130 удар/мин. В связи с этим данный рубеж назван порогом готовности.

Аэробная система характеризуется тем, что сжигание энергетически богатых соединений (углеводов, жиров и белков) происходит при достаточном количестве кислорода.Повышение мощности нагрузки ведет к несоответствию между количеством потребляемого кислорода и мощностью работы, т.е работа переходит в анаэробный режим. Основное количество энергии высвобождается при сжигании гликогена бескислородным путем. Именно этот момент и получил название порога анаэробного обмена (ПАНО). Физиологическим отражением этого показателя является содержание молочной кислоты в крови, которое превышает 4 ммоль/литр. ПАНО соответствует 50-60 % от МПК.

При воспитании общей выносливости для подготовленного спортсмена характерно естественное «вхождение» во вторую зону интенсивности нагрузок. Во второй тренировочной зоне (от 150 до 180 удар/мин) подключаются анаэробные механизмы энергообеспечения мышечной деятельности. Считается, что 150 удар/мин, это порог анаэробного обмена (ПАНО). Однако у слабо подготовленных занимающихся и у спортсменов с низкой спортивной формой ПАНО может наступить и 'при частоте сердечных сокращений 130-140 удар/мин, тогда как у хорошо тренированных спортсменов ПАНО может «отодвинуться» к границе 160-165 удар/мин.

В третьей тренировочной зоне (более 180 удар/мин) совершенствуются анаэробные механизмы энергообеспечения на фоне значительного кислородного долга. Здесь частота пульса перестает быть информативным показателем дозирования нагрузки, но приобретают вес показатели биохимических реакций крови и ее состава, в частности количество молочной кислоты. Уменьшается время отдыха сердечной мышцы при сокращении более 180 удар/мин, что приводит к падению ее сократительной силы (при покое 0,25 с – сокращение, 0,75 с – отдых; при 180 удар/мин – 0,22 с – сокращение, 0,08 с – отдых), резко возрастает кислородный долг.

К работе большой интенсивности организм приспосабливается в ходе повторной тренировочной работы. Но самых больших значений максимальный кислородный долг достигает только в условиях соревнований. Поэтому чтобы достичь высокого уровня интенсивности тренировочных нагрузок, используют методы напряженных ситуаций соревновательного характера (прикидки и т.д.).

Частота занятий

Минимальный оздоровительный эффект достигается при трех занятиях в неделю. Оптимальной считается величина – 4 занятия в неделю. Предельной величиной для оздоровительной тренировке является величина шести занятий в неделю. Семь занятий в неделю могут использовать только эпизодически, т.к. такая нагрузка может привести к хроническому переутомлению.

Интервалы отдыха

В оздоровительной тренировке (в отличии от спортивной) очередная нагрузка должна приходиться на период полного восстановления или фазу суперкомпенсации. Тренировочные занятия с оздоровительной целью не должны проходить в фазе недовосстановления, т.к. адаптационные возможности снижаются. При трехразовых занятиях на период восстановления приходится 48 часов, что практически полностью исключает возможность недовосстановления к.л. функции.

К. Купер (1988) рекомендует переход на 4 занятия не ранее выполнения шести недельного подготовительного курса по три занятия. Практика занятий клубов любителей бега предполагает переход на 4-х разовые занятия не ранее 3-6 месяцев регулярных тренировок в зависимости от уровня здоровья.

studfiles.net

ЧСС Частота сердечных сокращений

Частота сердечных сокращений

Средняя частота сердечных сокращений в состоянии покоя составляет 60-80 ударов в минуту и иногда может превышать 100 ударов в минуту у людей средних лет, ведущих сидячий образ жизни. Известно, что у тренированных выносливых атлетов, находящихся в хорошей форме, минимальная частота сердечных сокращений в состоянии покоя составляет 28-40 ударов в минуту.

Рис. 4. Частота сердечных сокращений увеличивается пропорционально увеличению нагрузки на велосипедном эргометре, в конечном счете достигая максимального значения (ЧССmах). У нетренированных людей она увеличивается быстрее, чем у хорошо натренированных. У тренированного человека линейное увеличение с ростом нагрузки выглядит более явным

Перед началом физической нагрузки частота сердечных сокращений обычно увеличивается, намного превышая нормальные показатели в состоянии покоя. Как упоминалось выше, эта упреждающая реакция, вероятно, возникает благодаря выделению нейромедиатора норадреналина симпатической нервной системой и гормона адреналина надпочечниками. Тонус блуждающего нерва, возможно, также снижается.

Увеличение частоты сердечных сокращений почти пропорционально увеличению интенсивности физической нагрузки и потреблению кислорода вплоть до полного изнеможения (рис. 4). Чем меньше натренирован человек, тем выше частота сердечных сокращений. К увеличению частоты сердечных сокращений во время физической нагрузки приводят уменьшение тонуса блуждающего нерва и увеличение симпатической стимуляции сердца. Нужно также помнить, что психогенное увеличение частоты сердечных сокращений может быть значительным.

Начиная с возраста 10-15 лет максимальная частота сердечных сокращений начинает незначительно, но стабильно снижаться -примерно на 1 удар в год. Это - очень надежная величина, которая остается неизменной изо дня в день. У взрослых максимальную частоту сердечных сокращений можно вычислить следующим образом:

ЧССтах = 220 ~ возраст в годах (±12 ударов в мин)

При постоянном уровне субмаксимальной нагрузки частота сердечных сокращений увеличивается, а затем выравнивается, поскольку потребность в кислороде для этой деятельности была удовлетворена. При каждом последующем увеличении интенсивности частота сердечных сокращений достигнет новой установившейся величины в пределах 1-2 мин. Однако чем интенсивнее физическая нагрузка, тем больше уходит времени на достижение этой установившейся величины.

Понятие установившейся частоты сердечных сокращений представляет собой основу для нескольких тестов, разработанных для оценки физической подготовки. При этих тестах людей помещают на тренажер, например, велоэргометр или бегущую дорожку, и они тренируются при стандартных уровнях нагрузки. У тех, чья физическая подготовка лучше, судя по их кардиореспираторной выносливости, установившаяся частота сердечных сокращений на данном уровне нагрузки будет ниже, чем у менее тренированных людей.

Во время длительной физической нагрузки, вместо выравнивания, частота сердечных сокращений может продолжить устойчиво увеличиваться при том же уровне нагрузки. Это явление называют кардиоваскулярным сдвигом, который вызван уменьшением венозного возврата к сердцу. Частота сердечных сокращений продолжает увеличиваться, чтобы сохранить минутный объем сердца (сердечный выброс) и кровяное давление на том же самом уровне, несмотря на уменьшение венозного возврата. Уменьшить венозный возврат может сокращение объема плазмы, вызванное фильтрацией жидкости из крови или избыточным потоотделением во время длительной физической нагрузки. Уменьшение тонуса симпатической нервной системы может также сыграть свою роль в уменьшении венозного возврата к сердцу.

Во время силовых упражнений, например, при поднятии тяжестей, частота сердечных сокращений ниже, чем во время физической нагрузки на выносливость, такой как бег. При одинаковом произведенном усилии при физической нагрузке на верхнюю часть тела ЧСС выше, чем при нагрузке на нижнюю. Физическая нагрузка на верхнюю часть тела приводит также к более высокому потреблению кислорода, среднему артериальному давлению и общему периферическому сопротивлению сосудов. Более высокая нагрузка на кровообращение при тренировке верхней части тела является результатом меньшей мышечной массы, повышенного внутригрудного давления и меньшей эффективности «мышечного насоса» - все это уменьшает венозный возврат крови к сердцу.

Частота сердечных сокращений, умноженная на систолическое кровяное давление,дает произведение ЧСС на давление (ПЧД), которое позволяет оценить нагрузку на сердце во время физической нагрузки:

ПЧД — ЧСС х систолическое кровяное давление

Влияние физической нагрузки на частоту сердечных сокращений

Частота сердечных сокращений при неутомительной и изматывающей физической нагрузке. При неутомительной нагрузке сердечные сокращения выходят на фазу плато; при изматывающей нагрузке отмечается постоянное повышение частоты сердечных сокращений

Помимо изменения дыхания при увеличении нагрузки также происходят изменения в сердечно-сосудистой системе и повышаются частота сердечных сокращений, артериальное давление и минутный объем кровообращения (объем сердечного выброса за 1 мин). При выполнении работы, не ведущей к утомлению, частота сердечных сокращений достигает фазы плато (устойчивое состояние). При утомительной или изматывающей физической нагрузке этот показатель не выходит на плато, а демонстрирует постоянное повышение частоты сердечных сокращений (что отражает накапливающееся утомление) (рис.).

Так называемые параметры сердечно-сосудистой системы повышаются в линейной зависимости от величины физической нагрузки, что дает возможность оценить пределы нагрузки у исследуемых лиц/пациентов. С помощью многократного измерения параметров при субмаксимальной нагрузке строят приблизительную линию максимальной физической нагрузки (линия наилучшего соответствия). Примером теста субмаксимальной нагрузки является тест PWC170 (Physical Working Capacity — физическая работоспособность), при котором измеряется частота сердечных сокращений при постепенном повышении нагрузки до приближения, но недостижения границы в 170 ударов в минуту. Нормальным значением PWC170 для нетренированных мужчин считается 3,0 Вт/кг, а для нетренированных женщин — 2,5 Вт/кг. У тренированных лиц это значение приближается к 4 Вт/кг, что соответствует мощности нагрузки, при которой обычно регистрируется максимальное потребление кислорода (МПК).

Использование ЧСС для направленного развития двигательных качеств (на примере определения точки отклонения по Конкони)

Наиболее доступным и информативным методом оценки реакции организма на физические нагрузки является ЧСС. Ее определяют перед занятием, после разминки, после выполнения отдельных упражнений в основной части занятия, после отдыха или периодов снижения интенсивности нагрузки (Белоцерковский, 2005; Булич, Муравов, 2003; Втмор, Косттл, 2003; Круцевич, 1999; Мищенко В. С., 1990; Применение пульсометрии..., 1996).

Сегодня в большинстве видов спорта тренеры планируют объем и интенсивность тренировочных нагрузок не только в часах, метрах, но и по ЧСС, определяемой при данной работе (табл. 57, 58).

Сравнивая характер и интенсивность нагрузки по изменению ЧСС и скорости ее восстановления, определяют уровень функционального состояния организма. Например, если после пробегания 400 м за 70 с пульс у спортсмена участился до 160 уд*мин-1 и восстановился за 2 мин до 120 уд-мин-1, а затем после такой же нагрузки повысился до 150 уд-мин-1 и восстановился за 3 мин, есть основания говорить об ухудшении функционального состояния сердечнососудистой системы.

Таблица 57 - Характеристика тренировочных процессов по зонам интенсивности (Платонов, 2004)

Зона интенсивности

Направленность физической нагрузки

Реакция организма

ЧСС, уд мин-1

Лактат, ммоль-л-1

I (восстановительная)

Активизация восстановительных процессов

100—120

2—3

II (поддерживающая)

Поддержка на достигнутом уровне аэробных процессов

140—150

3—4

III (развивающая)

Повышение аэробных возможностей, специальной выносливости к продолжительной работе

165—175

4—8

IV (развивающая)

Повышение гликолитических возможностей, специальной выносливости к кратковременной работе (скоростная выносливость)

175—185

8—12

V (спринтерская)

Повышение алактатних анаэробных возможностей, совершенствование скоростных возможностей

185 и выше

> 12

Таблица 58 — Характеристика тренировочных режимов разной направленности

Направленность тренировочного занятия

Количество серий упражнений

Продолжительность серии, мин

Интервал между упражнениями в 1 серии, с

Интервал между сериями

ЧСС во время работы, уд-мин-1

ЧСС перед выполнением очередной серии

Энергетические системы

Содержание молочной кислоты, ммоль-1

Совершенствование скоростных возможностей

7

6—7

20 1,5— 2 мин

От 185 и выше

125

Алактатная (фосфагенная) + лактатная (гликолитическая)

10

Развитие специальной (скоростной) выносливости

8—9

8

10— 40— 15 60 с

175— 185

135— 140

Алактатная (фосфагенная) + лактатная (гликолитическая)

8—12

Развитие общей выносливости

8—9 (до 10)

8

до 30 3—

4 мин

1 eons

110— 115

Аэробная (окислительная) +лактатная (гликолитическая)

4—8

У хорошо тренированных спортсменов ЧСС снижается в течение 60—-90 с с 180 до 120 уд-мин-1. В этом случае они готовы к повторному выполнению упражнения. Отставленный эффект физических нагрузок можно оценить по изменению ЧСС на следующее утро натощак.

Рисунок 11 — Схематическое изображение принципа метода Конкони

В последнее время в практике контроля в спорте распространился метод Конкони (Применение пульсометрии..., 1996), позволяющий определить величину ЧСС, которая соответствует максимальному, преимущественно аэробному, энергообеспечению без громоздких исследовательских процедур, связанных с анализом проб крови и воздуха. Тест Конкони базируется на том, что при определенной интенсивности выполнения работы линейная зависимость между интенсивностью работы и ЧСС нарушается и можно графически выявить индивидуальную точку отклонения (нарушение линейности). ЧСС, которая отмечается в этой точке, указывая на максимальный уровень интенсивности нагрузки, обеспечиваемой преимущественно аэробным путем. Выше этого уровня прогрессивно включаются анаэробные механизмы и наступает утомление (см. рис. 11).

Точка отклонения, по Конкони, близка к физиологическому понятию ПАНО, характеризующему предельную интенсивность нагрузки, при которой работа может выполняться относительно продолжительное время в устойчивом состоянии, без прогрессивного наращивания концентрации лактата в крови (Лактатный порог..., 1997; Симонова, 2001).

ЧСС точки отклонения индивидуальна и связана с состоянием спортсмена, уровнем тренированности, периодом годового цикла подготовки. Во всех случаях, исследуя ЧСС точки отклонения для определения интенсивности нагрузок, выбранных в качестве основных тренировочных средств, необходимо проводить тест Конкони для каждого спортсмена не менее одного раза в 3—4 недели.

Рисунок 12—График Сен Гупта для определения ориентировочно возможного времени непрерывной работы спортсменов циклических видов спорта в режиме заданной ЧСС (Применение пульсометрии..., 1996)

Определив ЧСС точки отклонения по тесту Конкони, следует определить необходимое время, в течение которого целесообразно выполнять нагрузки по установленной ЧСС. Это время можно определить, пользуясь формулой Карвоненна и графиком Сен Гупта (рис. 12). Формула Карвоненна (Применение пульсометрии..., 1996):

X%=(ЧССнагрузки - ЧССсостояния покоя * 100)/ (ЧССмаксимальная - ЧССсостояния покоя)

где Х% — интенсивность нагрузки.

Значения величины X % по формуле Карвоненна откладывают на оси абсцисс графика Сен Гупта и из этой точки проводят перпендикуляр до пересечения с нанесенной на шкалу наклоненной линией. Напротив полученной точки по оси ординат находят соответствующее время, ориентировочно возможное для непрерывной работы спортсменов — представителей циклических видов спорта — в заданном режиме ЧСС.

Оснащение: спорттестер.

Ход работы

Испытуемый выполняет тест Конкони (с использованием программного обеспечения спорттестера) в выбранных условиях: на беговой дорожке стадиона, в бассейне, на велотреке, беговой дорожке в природных условиях, где длина, рельеф и метеорологические условия каждого отрезка будут примерно одинаковы. Выполняя тест Конкони, спортсмен равномерно увеличивает скорость. В это время у него измеряют ЧСС, что позволяет получить графическую зависимость «скорость—ЧСС». В начале выполнения теста это соотношение имеет линейную зависимость, а затем учащение ЧСС замедляется. В этот момент (точка отклонения) достигается анаэробный порог. Тест продолжается до тех пор, пока не будет получена максимальная величина ЧСС. Для хорошо тренированных спортсменов подходят отрезки длиной 200—400 м. Для достижения максимальных значений ЧСС достаточно 10—20 отрезков, но не менее 8. Главное условие, которое следует соблюдать, — это постепенное увеличение скорости на каждом последующем отрезке и поддержание ее на постоянном уровне в пределах отрезка.

Тест Конкони проводят так:

  1. Слорттестер следует установить в режим измерения ЧСС с 5-секундным интервалом регистрации данных.
  2. Следует нажимать кнопку STOPE/RECALL после прохождения каждого отрезка дистанции в одном месте. Целесообразно визуально удостовериться в том, что на дисплее регистрируется время прохождения каждого отрезка.
  3. Необходимо увеличивать скорость на отрезках постепенно, иначе возможно наступление утомления до того, как будут пройдены все минимально необходимые отрезки.
  4. Заканчивать тест следует после достижения максимальной ЧСС или околомаксимальной.

На основании полученных значений строят графическую зависимость «скорость—ЧСС», определяют точку отклонения по Конкони и делают выводы об индивидуальном ПАНО испытуемого. Используя данные теоретического вступления к работе, находят по графику Сен Гупта ориентировочно возможное время работы при ЧСС точки отклонения испытуемого (Симонова, 2001; Применение пульсометрии..., 1996; Физиологическое тестирование спортсменов..., 1998).

Читайте также

sportguardian.ru


Смотрите также