Как рассчитать длину окружности и периметр круга? Вычислить диаметр


Как вычислить диаметр

Как вычислить диаметр окружностиДиаметр — это прямая, которая соединяет две точки окружности, находящиеся на самом большом расстоянии друг от друга, и проходит через центр окружности.Если известна длина радиуса окружности, то диаметр можно вычислить, умножив его на 2:

   

Если известна длина окружности, то диаметр можно найти, разделив ее на число Пи, которое приближенно берут равным 3,14:

   

Из последней формулы видно, что диаметр любой окружности приближенно в 3 раза меньше ее длины окружности.

Историческая справка.Люди много веков назад при изготовлении круглых корзин брали прутья, длина которых в 3 раза больше будущего диаметра корзины. Позже учеными было доказано, что если разделить длину любой окружности на ее диаметр, то получают одно и то же рациональное число. Это число находили на протяжении многих лет, а точность расчетов всегда была высокой. К примеру, в Древнем Египте это число выражалось неправильной дробью 256/8, которое имеет отклонение не больше 1\%.Первым это соотношение вычислил Архимед, построив 2 правильных 96-тиугольника — один внутри, а другой вокруг окружности. Периметр вписанного многоугольника принимался за минимально возможную длину описанной окружности, а периметр описанного многоугольника — за максимальную длину. Согласно расчетам Архимеда соотношение длины окружности и диаметра равнялось 3,1419. Намного позже это число вычислил с точностью до 8-ми знаков китайский математик Цзу Чунчжи. И только через 900 лет число было посчитано с точностью до ста знаков после запятой. Имя этой бесконечной дроби в 1706 году дал английский математик Уильям Джонс, который назвал ее первой буквой греческих с лов окружность (периферия) и периметр.Последнюю формулу также можно записать в виде отношения:

   

ru.solverbook.com

Как найти диаметр круга?

Чтобы написать, как найти диаметр круга, необходимо сначала определить, что это такое. Итак, диаметр круга – это прямая, которая проходит через центр круга и соединяет точки на окружности.

Ниже мы рассмотрим способы нахождения диаметра окружности через её длину, площадь вписанного круга, и через радиус.

Определение диаметра

Принято считать, что какой бы величины ни была окружность, отношение ее длины к диаметру – это постоянное число «Пи», которое примерно равно 3,14. Чтобы понять, как найти диаметр круга, следует привести формулы и на примере показать вычисления данной величины.

Радиус

Если известен радиус круга, то диаметр вычислить очень просто:

D = 2R, где D – это диаметр, а R – радиус. Получается, диаметр равен двум радиусам. Например, известно, что радиус равен 10 см, тогда диаметр вычисляем так: D=2*10, получается, что диаметр равен 20 см.

Длина окружности

В случае, если известна длина окружности, для вычисления может быть полезным число . Вот какой формулой можно воспользоваться: D = l/, где l – это длина круга. Получается, если длина окружности равна 18 см, то диаметр вычисляем так: D = 18 / 3,14 ≈ 5,73 см.

О нахождении длины окружности можно узнать в статье Как найти длину окружности.

Площадь круга

Если известна только площадь круга, то это значение также можно применить. При этом площадь обозначается буквой S. Исходя из формулы S=R2, можно найти радиус, а значит, и диаметр. Итак, радиус R = √ (S / ). Для нахождения радиуса делим площадь на число Пи и извлекаем из этого значения квадратный корень. Таким образом, если площадь равна 25 см, то радиус вычисляется так: R = √ (25 / 3,14) ≈ √8 ≈ 2,8 см. Затем можно вычислить диаметр: D = 2R, D = 2,8*2= 5,6 см.

Дополнительно о нахождении диаметра можно прочитать в статье Как найти диаметр окружности.

elhow.ru

Как вычислить диаметр круга

Кругом называют плоскую геометрическую фигуру, а линию, ее ограничивающую, принято называть окружностью. Основное свойство круга заключается в том, что каждая точка на этой линии находится на одинаковом расстоянии от центра фигуры. Отрезок с началом в центре круга и окончанием на любой из точек окружности называется радиусом, а отрезок, соединяющий две точки окружности и проходящий через центр - диаметром.

Инструкция

  • Найдите длину диаметра круга удвоением длины его радиуса, если эта длина известна. Это самый простой вариант исходных данных при необходимости определить длину диаметра.
  • Используйте число Пи для нахождения длины диаметра по известной длине окружности. Эта константа выражает постоянное соотношение между этими двумя параметрами круга - независимо от размеров круга, деление длины его окружности на длину диаметра всегда дает одно и то же число. Из этого вытекает, что для нахождения длины диаметра следует длину окружности разделить на число Пи. Как правило, для практических вычислений длины диаметра бывает достаточно точности до сотых долей единицы, то есть до двух знаков после запятой, поэтому число Пи можно считать равным 3,14. Но так как эта константа является числом иррациональным, то имеет бесконечное число знаков после запятой. Если возникнет необходимость в более точном определении диаметра окружности, то нужное число знаков для числа пи можно найти, например, по этой ссылке -

    .

  • При известной площади круга (S) для нахождения длины диаметра (d) удваивайте квадратный корень из отношения площади к числу Пи: d=2∗√(S/π).
  • При известной длине стороны описанного возле круга прямоугольника, длина диаметра будет равна этой известной величине.
  • При известных длинах сторон (a и b) прямоугольника, вписанного в круг, длину диаметра (d) можно вычислить, найдя длину диагонали этого прямоугольника. Поскольку диагональ здесь является гипотенузой в прямоугольном треугольнике, катеты которого образуют стороны известной длины, то по теореме Пифагора длину диагонали, а вместе с ней и длину диаметра описанной окружности, можно рассчитать, найдя квадратный корень из суммы квадратов длин известных сторон: d=√(a² + b²).

completerepair.ru

Как рассчитать длину окружности и периметр круга? :: SYL.ru

Окружность встречается в повседневной жизни не реже, чем прямоугольник. А у многих людей задача о том, как рассчитать длину окружности, вызывает затруднение. И все потому, что у нее нет углов. При их наличии все стало бы намного проще.

Что такое окружность и где она встречается?

Эта плоская фигура представляет собой некоторое количество точек, которые расположены на одинаковом удалении от еще одной, которая является центром. Это расстояние называется радиусом.

В повседневной жизни нечасто приходится вычислять длину окружности, кроме людей, которые являются инженерами и конструкторами. Они создают проекты механизмов, в которых используются, например, шестеренки, иллюминаторы и колеса. Архитекторы создают дома, имеющие круглые или арочные окна.

В каждом из этих и других случаях требуется своя точность. Причем высчитать длину окружности совершенно точно оказывается невозможно. Связано это с бесконечностью основного числа, имеющегося в формуле. «Пи» до сих пор уточняется. И используется чаще всего округленное значение. Степень точности выбирается такой, чтобы дать максимально верный ответ.

Обозначения величин и формулы

До того как рассчитать длину окружности, потребуется договориться о том, какая буква что обозначает. Это удобно записать в таблице.

ВеличинаОбозначение
радиусr
диаметрd
длина окружностиl

Теперь легко ответить на вопрос о том, как рассчитать длину окружности по радиусу, для этого потребуется такая формула:

l =2π * r.

Здесь и далее π берется округленным. Чаще всего в задачах используют значение 3,14. Но иногда нужна большая точность и тогда применяют такое число: 3,14159.

Поскольку радиус и диаметр связаны друг с другом, то есть и другая формула для расчетов. Так как радиус в два раза меньше, то выражение немного видоизменится. И формула того, как рассчитать длину окружности, зная диаметр, будет следующей:

l = π * d.

Как быть, если нужно вычислить периметр круга?

Просто вспомнить, что круг включает в себя все точки внутри окружности. А значит, его периметр совпадает с ее длиной. И после того, как рассчитать длину окружности, поставить знак равенства с периметром круга.

Кстати, и обозначения у них такие же. Это касается радиуса и диаметра, а периметром является латинская буква P.

Примеры заданий

Задача первая

Условие. Узнать длину окружности, радиус которой равен 5 см.

Решение. Здесь несложно понять, как рассчитать длину окружности. Нужно только воспользоваться первой формулой. Поскольку радиус известен, то потребуется только подставить значения и сосчитать. 2 умноженное на радиус, равный 5 см, даст 10. Осталось еще умножить его на значение π. 3,14 * 10 = 31,4 (см).

Ответ: l = 31,4 см.

Задача вторая

Условие. Имеется колесо, длина окружности которого известна и равна 1256 мм. Необходимо вычислить его радиус.

Решение. В этом задании потребуется воспользоваться той же формулой. Но только известную длину нужно будет разделить на произведение 2 и π. Получается, что произведение даст результат: 6,28. После деления остается число: 200. Это искомая величина.

Ответ: r = 200 мм.

Задача третья

Условие. Вычислить диаметр, если известна длина окружности, которая равна 56,52 см.

Решение. Аналогично предыдущей задаче потребуется разделить известную длину на значение π, округленное до сотых. В результате такого действия получается число 18. Результат получен.

Ответ: d = 18 см.

Задача четвертая

Условие. Стрелки часов имеют длину 3 и 5 см. Нужно вычислить длины окружностей, которые описывают их концы.

Решение. Поскольку стрелки совпадают с радиусами окружностей, то потребуется первая формула. Ею нужно воспользоваться два раза.

Для первой длины произведение будет состоять из множителей: 2; 3,14 и 3. Итогом будет число 18,84 см.

Для второго ответа нужно перемножить 2, π и 5. Произведение даст число: 31,4 см.

Ответ: l1 = 18,84 см, l2= 31,4 см.

Задача пятая

Условие. Белка бегает в колесе диаметром 2 м. Какое расстояние она пробегает за один полный оборот колеса?

Решение. Это расстояние равно длине окружности. Поэтому нужно воспользоваться подходящей формулой. А именно перемножить значение π и 2 м. Подсчеты дают результат: 6,28 м.

Ответ: Белка пробегает 6,28 м.

www.syl.ru

Как вычислить диаметр окружности Как? Так!

Содержимое:

2 метода:

Вычислить диаметр окружности не составит труда, если вы знаете какие-либо другие ее размеры: радиус, длину окружности или площадь ограничиваемого ею круга. Диаметр можно вычислить, даже не зная этих размеров - при наличии начерченной окружности. Если вы хотите узнать, как вычислить диаметр окружности, следуйте указанным ниже шагам.

Шаги

Метод 1 Вычисление диаметра окружности с использованием радиуса, длины окружности или площади круга

  1. 1 Если вам известен радиус окружности, то, для того чтобы узнать диаметр, удвойте его. Радиус - это расстояние от центра окружности до любой точки, лежащей на ней. Например, если радиус окружности равен 4 см, то диаметр окружности составляет 4 см x 2, или 8 см.
  2. 2 Если вам известна длина окружности, то, для того чтобы вычислить диаметр, разделите ее на π. Число π равно примерно 3,14; но чтобы получить наиболее точное значение, вам следует воспользоваться калькулятором. Например, если длина окружности равна 10 см, то диаметр окружности составляет 10 cm/π, или 3,18 см.
  3. 3 Если вам известна площадь круга, то для нахождения диаметра разделите ее на π и извлеките из результата квадратный корень, чтобы получить радиус; затем умножьте на 2 для получения диаметра. Данное вычисление вытекает из формулы площади круга, A = πr2, преобразованной для нахождения диаметра. Например, если площадь круга равна 25 см2, разделите ее на число π и извлеките квадратный корень: √(25/3,14) = √7,96 = 2,82 см. Это радиус окружности. Умножьте его на 2, и вы получите диаметр: 2,82 х 2 = 5,64 см.

Метод 2 Вычисление диаметра окружности из чертежа окружности

  1. 1 Внутри окружности начертите горизонтальную прямую, проходящую от одной точки окружности к другой. Для этого воспользуйтесь линейкой или угольником. Прямая может проходить в верхней части круга, в нижней, или где-нибудь посередине.
  2. 2 Пометьте точки, в которых прямая пересекает окружность, буквами "A" и "B."
  3. 3 Начертите две пересекающиеся окружности, одну - с центром в точке A, а другую - с центром в точке B. Убедитесь, что две окружности пересекаются так, будто образуют диаграмму Венна.
  4. 4 Через две точки, в которых окружности пересеклись, проведите прямую. Отрезок этой прямой между двумя точками и будет равен диаметру окружности.
  5. 5 Измерьте диаметр. Измерьте его с помощью линейки, а если нужна большая точность - штангенциркулем с цифровой индикацией. Готово!

Советы

  • Научитесь пользоваться циркулем. Это очень полезный инструмент, который предназначен для многих целей, включая определение диаметра окружности описанным выше графическим способом. Для этого можно также использовать измерительный циркуль.
  • Работа с геометрическими формулами и уравнениями станет легче при условии постоянной практики. Попросите кого-то, кто работал с окружностями или другими геометрическими фигурами, помочь вам. Когда вы наберетесь немного опыта, вы скорее всего почувствуете, что задачи по геометрии будут казаться легче.

Что вам понадобится

  • Калькулятор
  • Карандаш
  • Циркуль
  • Линейка
  • Штангенциркуль с цифровой индикацией (при необходимости)

Прислал: Давыдова Юлия . 2017-11-06 10:38:33

kak-otvet.imysite.ru

через диаметр и радиус. Терминология, основные формулы и характеристика фигуры :: SYL.ru

Окружность - замкнутая кривая, все точки которой находятся на одинаковом расстоянии от центра. Эта фигура является плоской. Поэтому решение задачи, вопрос которой состоит в том, как найти длину окружности, является достаточно простым. Все имеющиеся способы, мы рассмотрим в сегодняшней статье.

Описания фигуры

Кроме достаточно простого описательного определения существуют еще три математических характеристики окружности, которые уже сами по себе содержат ответ на вопрос, как найти длину окружности:

  • Состоит из точек A и B и всех других, из которых AB можно увидеть под прямым углом. Диаметр данной фигуры равен длине рассматриваемого отрезка.
  • Включает исключительно такие точки X, что отношение AX/BX неизменно и не равно единице. Если это условие не соблюдается, то это не окружность.
  • Состоит из точек, для каждой из которых выполняется следующее равенство: сумма квадратов расстояний до двух других – это заданная величина, которая всегда больше половине длины отрезка между ними.

Терминология

Не у всех в школе был хороший учитель математики. Поэтому ответ на вопрос, как найти длину окружности, осложняется еще и тем, что не все знают основные геометрические понятия. Радиус – отрезок, который соединяет центр фигуры с точкой на кривой. Особым случаем в тригонометрии является единичная окружность. Хорда – отрезок, который соединяет две точки кривой. Например, под это определение подпадает уже рассмотренный AB. Диаметр – это хорда, проходящая через центр. Число π равно длине единичной полуокружности.

Основные формулы

Из определений непосредственно следуют геометрические формулы, которые позволяют рассчитать основные характеристики окружности:

  1. Длина равна произведению числа π и диаметра. Формулу обычно записывают следующим образом: C = π*D.
  2. Радиус равен половине диаметра. Его также можно рассчитать, вычислив частное от деления длины окружности на удвоенное число π. Формула выглядит так: R = C/(2* π) = D/2.
  3. Диаметр равен частному от деления длины окружности на π или удвоенному радиусу. Формула является достаточно простой и выглядит так: D = C/π = 2*R.
  4. Площадь круга равна произведению числа π и квадрата радиуса. Аналогично в этой формуле можно использовать диаметр. В этом случае площадь будет равна частному от деления произведения числа π и квадрата диаметра на четыре. Формулу можно записать следующим образом: S = π*R2 = π*D2/4.

Как найти длину окружности по диаметру

Для простоты объяснения обозначим буквами необходимые для расчета характеристики фигуры. Пусть C – это искомая длина, D – ее диаметр, а число π приблизительно равно 3,14. Если у нас есть всего одна известная величина, то задачу можно считать решенной. Зачем это нужно в жизни? Предположим мы решили обнести круглый бассейн забором. Как вычислить необходимое количество столбиков? И тут на помощь приходит умение, как вычислить длину окружности. Формула выглядит следующим образом: C = π D. В нашем примере диаметр определяется на основе радиуса бассейна и необходимого расстояния до забора. Например, предположим, что наш домашний искусственный водоем составляет 20 метров в ширину, а столбики мы собираемся ставить на десятиметровом расстоянии от него. Диаметр получившейся окружности равен 20 + 10*2 = 40 м. Длина – 3,14*40 = 125,6 метров. Нам понадобятся 25 столбиков, если промежуток между ними будет около 5 м.

Длина через радиус

Как всегда, начнем с присвоения характеристикам окружности букв. На самом деле они являются универсальными, поэтому математикам из разных стран вовсе не обязательно знать язык друг друга. Предположим, что C – это длина окружности, r – ее радиус, а π приблизительно равно 3,14. Формула выглядит в этом случае следующим образом: C = 2*π*r. Очевидно, что это абсолютно правильное равенство. Как мы уже разобрались диаметр окружности равен ее удвоенному радиусу, поэтому эта формула так и выглядит. В жизни этот способ тоже может часто пригодиться. Например, мы печем торт в специальной раздвижной форме. Чтобы он не испачкался, нам нужна декоративная обертка. Но как вырезать круг нужного размера. Здесь на помощь и приходит математика. Те, кто знают, как узнать длину окружности, сразу скажут, что нужно умножить число π на удвоенный радиус формы. Если ее радиус равен 25 см, то длина будет составлять 157 сантиметров.

Примеры задач

Мы уже рассмотрели несколько практических случаев полученных знаний о том, как узнать длину окружности. Но зачастую нас заботят не они, а реальные математические задачи, которые содержатся в учебнике. Ведь за них учитель выставляет баллы! Поэтому давайте рассмотрим задачу повышенной сложности. Предположим, что длина окружности составляет 26 см. Как найти радиус такой фигуры?

Решение примера

Для начала запишем, что нам дано: C = 26 см, π = 3,14. Также вспомним формулу: C = 2* π*R. Из нее можно извлечь радиус окружности. Таким образом, R= C/2/π. Теперь приступим к непосредственному расчету. Сначала делим длину на два. Получаем 13. Теперь нужно разделить на значение числа π: 13/3,14 = 4,14 см. Важно не забыть записать ответ правильно, то есть с единицами измерения, иначе теряется весь практический смысл подобных задач. К тому же за подобную невнимательность можно получить оценку на один балл ниже. И как бы досадно ни было, придется мириться с таким положением вещей.

Не так страшен зверь, как его малюют

Вот мы и разобрались с такой непростой на первый взгляд задачей. Как оказалось, нужно просто понимать значение терминов и запомнить несколько легких формул. Математика – это не так страшно, нужно только приложить немного усилий. Так что геометрия ждет вас!

www.syl.ru