Способ получения сульфата алюминия. Получить алюминия сульфат алюминия


Применение сернокислого алюминия в различных областях.

Сернокислый алюминий — это сложное неорганическое вещество, соль белого цвета с серым или голубым оттенком. Вещество может иметь розовый оттенок.

Сульфат алюминия.

Востребованная соль алюминия.

Соль Al₂(SO₄)₃ очень гигроскопична. Отличается быстрой растворимостью в воде. Вещество плавится при температуре +700 °C, плотность его равняется 1,62–2,67 г/см³.

Сернокислый алюминий — это самый распространенный коагулянт, применяемый для очистки воды от коллоидных частиц (наиболее мелких размеров). Это свойство сульфата алюминия связано с легкостью его получения и невысокой стоимостью.

Способы получения сульфата алюминия.

Соль выпускают 3 сортов. Продукт высшего сорта востребован в пищевой и фармацевтической промышленности, а соль 1 и 2 сорта подходит для технических целей. Сернокислый алюминий получают несколькими способами:

  1. Соль высшего сорта получают в результате реакции замещения между гидроксидом алюминия и серной кислотой высокой концентрации. В результате этого процесса алюминий, отличающийся большей активностью, занимает место водорода в составе кислоты. По окончании реакции получают 1 молекулу соли сульфата алюминия и 6 молекул воды. Полученный коагулянт имеет высокий процент чистоты с минимальной долей примесей.
  2. Получить соль технического качества можно в результате обработки серной кислотой бокситов или глиноземов. Этот метод также основан на реакции по замене молекул водорода алюминием. В результате метода получают соль 1–2 сорта. Высвобожденный водород поднимается в атмосферу. Этот метод является промежуточным процессом для получения чистого алюминия из бокситов.
  3. Еще один способ — это получить коагулянт из оксида, обработанного серной кислотой.

Получить соль алюминия в домашних условиях можно, используя серную кислоту и кусочек алюминиевой фольги. При проведении реакции следует быть очень осторожным и соблюдать правила безопасности по работе с кислотами. Проводить реакцию нужно в хорошо проветриваемом помещении. Серная кислота разной концентрации продается в хозяйственных магазинах.

Для получения кристаллов коагулянта ее нужно развести до 10% концентрации дистиллированной водой. Фольга растворяется в течение 7 дней. Полученный раствор фильтруют через бумажный фильтр. Остаток воды испаряется на открытом воздухе. Ускорить процесс можно выпариванием на электроплитке, перелив раствор в термостойкий стакан.

Очень важное замечание: при разведении серной кислоты и других кислот следует кислоту лить в воду, а не наоборот. Фольгу замачивают в растворе кислоты, накрывают салфеткой и оставляют для прохождения химической реакции.

Соль высшего качества имеет сыпучую консистенцию, производится в виде образований размером до 20 мм. Соль для технических целей выпускают крупными кристаллами-пластинами или большими кусками весом до 10 кг.

Попадание сернокислого алюминия в организм человека может нанести ему непоправимый ущерб. Вещество может привести к ожогу носоглотки. Попадание на кожу или в глаза вызывает покраснение, зуд, боль, ожог. Попадание в желудочно-кишечный тракт может вызывать болевые приступы в желудке, рвоту и диарею.

Первая помощь при отравлении химикатом:

  • промыть глаза и открытые участки кожи;
  • организовать доступ свежего воздуха или вывести пострадавшего на улицу;
  • напоить пострадавшего молоком и вызвать рвоту;
  • обратиться в медицинское учреждение.

Применение сульфата алюминия в очистке водопроводной воды.

Полученное из глиноземов или бокситов вещество применяют как сильный коагулянт для очистки воды от коллоидных частиц. Данные частицы обладают отрицательным электрическим зарядом. К коллоидным частицам присоединяются ионы из окружающего их раствора с положительным зарядом. Это создает на их поверхности двойной электрический слой. В результате коллоидные частицы начинают отталкиваться друг от друга. У них небольшой удельный вес, и они находятся во взвешенном состоянии.

Коагулянт (в данном случае — это сульфат алюминия) несет на себе положительный ион. Он сжимает двойной электрический слой и нейтрализует его. Частицы получают дестабилизированный вид. Они окружают коагулянт при установлении контакта с ним. Если смесь в этот момент быстро перемешать, то химическое вещество получит однородную дисперсию. Это позволит увеличить максимальный контакт между частицами.

Если перемешивать смесь несколько минут, то примеси коагулируют в более крупные хлопья. Крупные частицы, увеличиваясь в размерах и приобретая больший вес, начинают осаждаться под действием силы тяжести.

Очистка воды.

Фильтрация воды солями алюминия.

Очищенная вода теоретически должна быть чистой, без любых примесей. Но на практике коагулянт содержится в очищенной воде. Чем жестче вода, тем выше его концентрация. Это связано с тем, что в жесткой воде есть большое содержание гидроксида кальция и карбоната натрия, вступающих в реакцию с сульфатом алюминия и осаждающих алюминий в виде нерастворимого студенистого осадка гидроксида алюминия. Для измерения концентрации коагулирующего вещества в воде применяют концентратомеры, или солемеры. Хотя на самом деле концентратомерами называют приборы, определяющие концентрацию кислот и щелочей. Солемеры устанавливают для определения концентрации растворов солей.

Применение в пищевой и фармацевтической промышленности.

Сульфат алюминия известен как алюминиевые квасцы, или добавка E 520.

В пищевом производстве E 520 относится к стабилизаторам. Его получают из природных руд: боксита, алунита, глиноземов. Они подвергаются реакции с серной кислотой высокой концентрации при температурах +100…+250 °C. По окончании процесса получают соль с высоким коэффициентом чистоты.

Свойства стабилизатора:

  • порошок или пластинки белого цвета с серым, розовым или голубоватым оттенком;
  • без запаха;
  • отличается хорошей растворимостью в воде, плохо взаимодействует со спиртом;
  • концентрация — не меньше 99,5%.
  • вкус добавки — сладковатый и терпкий
  • очень гигроскопичное вещество, выветривается на воздухе.

Добавка E 520 отпускается в таре с дополнительными вставками, защищающими содержимое от влаги.

Сульфат алюминия применяют в рыбоперерабатывающей отрасли для сохранения товарного вида рыбы и предупреждения распада волокон. Стабилизатор используется при консервировании плодов и овощей. Добавка используется в кондитерской промышленности в производстве засахаренных и глазированных в сахаре фруктов.

В пищевой промышленности.

Е520 сохранит продукты свежими и красивыми.

Но основное применение добавки E 520 — для очистки питьевых и сточных вод. Вещество взаимодействует с примесями, которые выпадают в осадок. Он оседает на дно емкостей или водоемов. Вода пропускается поточным методом через систему специальных фильтров, где очищается и осветляется, после чего становится пригодной для питья и применения в производстве.

Другие области применения.

Сульфат алюминия также используется:

  • в косметической промышленности, входит в составы декоративной косметики;
  • при производстве бытовой химии — в составе антиперспирантов;
  • как компонент обезболивающих средств от укусов насекомых;
  • в сельском хозяйстве для обработки почв — входит в состав ядов и удобрений для борьбы с вредителями;
  • в текстильном производстве входит в состав красителей;
  • является компонентом нерастворимых пигментов в печатном деле.
В косметической промышленности.

Соли алюминия широко используют в косметической промышленности.

Вещество применяется как гидроизолятор в бетонных конструкциях. Сульфат алюминия используется в производстве огнетушителей.

Им обрабатывают шерстяные ткани для удерживания красящих пигментов. Процесс называется протрава шерстяных волокон. В водном растворе образуется дисперсная гидроокись алюминия, которая поглощается и хорошо удерживается волокнами шерсти. Протравленные волокна приобретают способность поглощать красители за счет адсорбированной ими гидроокиси алюминия.

Похожие статьи

ometallah.com

Раствор сульфата алюминия - получение, применение

Сульфат алюминия – химическое соединение с формулой Al2(SO4)3 .Сульфат алюминия - белое кристаллическое вещество

Сульфат алюминия растворим в воде и, в основном, используется в качестве флокулянта для очистки питьевой и технической воды станциями очистки сточных вод, а также в производстве бумаги.

Сульфат алюминия иногда упоминается как серная кислота, квасцы алюмоаммиачные или пищевая добавка Е 523. Безводная форма встречается в природе как редкий минерал Миллозевичит, содержащийся в вулканических средах, а также получается при сжигании угольных отходов. Сульфат алюминия образует множество различных гидратов, в числе которых кристаллогидрат Al2(SO4)3*16h3O и октадекагидрат Al2(SO4)3*18h3O.

Сульфат алюминия обладает способностью поглощать и удерживать молекулы воды из окружающей атмосферы.

Получение сульфата алюминия технического возможно путем добавления гидроксида алюминия Al(OH)3 в серную кислоту h3SO 4.

Также возможно получение сульфата алюминия из тетрагидроксоалюмината натрия.

Сульфат алюминия – это белое или почти белое кристаллической формы или в виде порошка соединение без запаха. Он растворим в воде, не летуч и легковоспламеняем. Сульфат алюминия обладает чрезвычайно кислым вкусом.

Применение сульфата алюминия

Раствор сульфата алюминия используется для очистки воды и как краситель в обработке текстиля. В процессе очистки воды раствор сульфата алюминия приводит к коагулированию, нежелательные примеси и загрязненные частицы оседают на дно сосуда и легко отфильтровываются.

При растворении в большом количестве нейтральной или слегка щелочной воды, раствор сульфата алюминия образует студенистый осадок гидроксида алюминия Al(OH)3, который используется при печати и окрашивании тканей, так как является нерастворимым пигментом.

Сульфат алюминия иногда используется для снижения pH почвы сада, что в свою очередь приводит при выращивании некоторых видов цветов (Гортензии) к их повторному цветению.

Сульфат алюминия является активным ингредиентом некоторых антиперспирантов.

В строительстве он используется в качестве гидроизолятора и ускорителя в производстве бетона.

Сульфат алюминия может быть использован в борьбе с моллюсками, насекомыми и слизняками.

Он также используется в производстве огнетушителей, добавок для почвы и удобрений, мыла, жиров, лекарственных препаратов и косметических средств.Сульфат алюминия - краситель для текстиля

В медицине сульфат алюминия входит в состав лекарств, облегчающих боль и дискомфорт, вызванные укусами насекомых. Он помогает разрушить токсичные химические вещества, содержащиеся в укусах, и помогает уменьшить их воздействие на кожу. Эти препараты выпускается в виде спреев, которые наносятся непосредственно на пораженные участки кожи и эффективнее помогают, если будут использованы сразу же после укуса.

Вред сульфата алюминия

Сульфат алюминия вреден при проглатывании или вдыхании. Вдыхание паров сульфата алюминия вызывает кашель и, возможно, одышку.

При контакте с кожей или глазами сульфат алюминия вызывает раздражение, покраснение, зуд и боль. Употребление сульфата алюминия внутрь приводит к сильному раздражению кишечника и желудка, сопровождаемое рвотой, тошнотой и диареей.

Это соединение может вызывать сильные ожоги, если контактирует с открытыми участками кожи.

Первая помощь при отравлении сульфатом алюминия

При попадании сульфата алюминия на кожу или в глаза необходимо промыть пораженный участок водой. В случае вдыхания паров необходимо выйти из токсичной области и медленно отдышаться. Если сульфат алюминия был применен внутрь, необходимо выпить стакан молока, а затем спровоцировать рвоту.

При отравлении сульфатом алюминия ни в коем случае нельзя использовать бикарбонаты, так как такое сочетание в буквальном смысле является взрывным.

Хранение сульфата алюминия

Сульфат алюминия необходимо хранить в прохладном, сухом месте в плотно закрытой таре, не смешивая с другими веществами.

www.neboleem.net

Как из оксида алюминия получить алюминий? Химические формулы

Алюминий обладает свойствами, которые применимы во многих промышленностях: военном деле, строительстве, питании, транспорте и др. Он пластичный, легкий и широко распространен в природе. Многие люди даже не подозревают того, как широко можно использовать алюминий.

Многие сайты и книги описывают этот чудесный металл и его свойства. Информация находится в свободном доступе.

В лаборатории можно производить любые соединения алюминия, но в малых количествах и по высоким ценам.

История добычи элемента

Вплоть до середины девятнадцатого века ни об алюминии, ни о восстановлении его оксида речи не шло. Первая попытка получения алюминия была предпринята химиком Х. К. Эрстедом и закончилась успешно. Чтобы восстановить металл из его оксида, он использовал амальгамированный калий. Но никто не понял, что получилось в итоге.

Прошло несколько лет, и алюминий снова был получен химиком Велером, который нагрел безводный хлорид алюминия с калием. Ученый упорно трудился 20 лет и, наконец, сумел создать гранулированный металл. По цвету он напоминал серебро, но был легче него в несколько раз. Длительное время до начала двадцатого века алюминий ценился больше золота и выставлялся в музеях как экспонат.

Где-то в начале XIX века английский химик Дэви провел электролиз оксида алюминия и получил металл, названный "алюмиум" или "алюминум", что можно переводить как "квасцы".

Алюминий очень трудно отделить от других веществ - это одна из причин его дороговизны в то время. Ученое собрание и промышленники быстро узнали о потрясающих свойствах нового металла и продолжили попытки его добычи.

В больших количествах алюминий стали получать уже в конце того же девятнадцатого века. Ученый Ч. М. Холлом предложил растворять оксид алюминия в расплаве криолита и пропускать эту смесь через электрический ток. Через какое-то время в сосуде появлялся чистый алюминий. В промышленности и сейчас производят металл этим методом, но об этом позже

Для производств нужна прочность, которой, как выяснилось чуть позднее, у алюминия не было. Тогда металл стали сплавлять с иными элементами: магнием, кремнием и т. д. Сплавы были намного прочнее обычного алюминия - именно из них стали выплавлять самолеты и военную технику. А придумали слить алюминий и другие металлы в единое целое в Германии. Там же, в Дюрене, сплав, названный дюралюминием, поставили на производство.

Как из оксида алюминия получить алюминий

В рамках школьной программы по химии проходят тему "Как из оксида металла получить чистый металл".

К этому методу мы можем отнести и наш вопрос, как из оксида алюминия получить алюминий.

Чтобы образовать металл из его оксида, нужно добавить восстановитель - водород. Пойдет реакция замещения с образованием воды и металла: МеО + Н2 = Ме + Н2О (где Ме - металл, а Н2 - водород).

Пример с алюминием: Al2О3 + 3Н2 = 2Al + 3Н2О

На практике такой прием позволяет получать чистые активные металлы, которые не восстанавливаются оксидом углерода. Метод подходит для очистки небольшого количества алюминия и довольно-таки дорого стоит.

Как получить алюминий из оксида алюминия через добавление более электроотрицательного металла

Электрохимический ряд

Чтобы получить алюминий этим способом, нужно подобрать более электроотрицательный металл и добавить его к оксиду - он вытеснит наш элемент из кислородного соединения. Более электроотрицательный металл - это тот, что стоит левее в электрохимическом ряду (на фото к подзаголовку - выше).

Примеры: 3Mg + Al2О3 = 2Al + 3MgO

6К + Al2О3 = 2Al + 3К2О

6Li + Al2О3 = 2Al + 3Li2О

Но как получить алюминий из оксида алюминия в условиях широкой промышленности?

Промышленный способ

Руда боксит

Большинство производств для добычи элемента используют руды, которые называют бокситами. Сначала из них выделяют оксид, потом растворяют его в расплаве криолита, а затем получают чистый алюминий путем электрохимической реакции.

Это обходится дешевле всего и не требует дополнительных операций.

Кроме того, можно получить хлорид алюминия из оксида алюминия. Как это сделать?

Получение хлорида алюминия

Хлоридом алюминия называют среднюю (нормальную) соль из соляной кислоты и алюминия. Формула: AlCl3.

Для получения нужно добавить кислоту.

Уравнение реакции выглядит следующим образом - Al2О3 + 6HCl = 2AlCl3 + 3Н2О.

Как получить хлорид алюминия из оксида алюминия, не добавляя кислот?

Для этого надо прокалить спрессованную смесь оксида алюминия и углерода (сажа) в токе хлора при 600-800 гр. Хлорид должен отогнаться.

Эту соль применяют в качестве катализатора многих реакций. Ее главная роль - образование продуктов присоединения с разными веществами. Хлоридом алюминия протравливают шерсть, и его добавляют в антиперспиранты. Также соединение играет не последнюю роль в переработке нефти.

Получение гидроксоалюмината натрия

Гидроксоалюминат натрия

Как из оксида алюминия получить гидроксоалюминат натрия?

Чтобы получить это сложное вещество, можно продолжить цепочку превращений и сначала получить из оксида хлорид, а потом добавить гидроксид натрия.

Хлорид алюминия - AlCl3, гидроксид натрия - NaOH.

Al2O3 → AlCl3 → Na[Al(OH)4]

Al2О3 + 6HCl = 2AlCl3 + 3Н2О

AlCl3 + 4NaOH (концентрированный) = Na[Al(OH)4] + 3NaCl5

Но как из оксида алюминия получить тетрагидроксоалюминат натрия, избегая превращения в хлорид?

Чтобы из оксида алюминия получить алюминат натрия, нужно создать гидроксид алюминия и добавить к нему щелочь.

Следует напомнить, что щелочь - это основание, растворимое в воде. Сюда относят гидроксиды щелочных и щелочноземельных металлов (I и II группа таблицы Менделеева).

Al→ Al(ОН)3 → Na[Al(OH)4]

Из оксидов металлов средней активности, к которым относится алюминий, нельзя получать гидроксиды. Поэтому сначала мы восстановим чистый металл, например, через водород:

Al2О3 + 3Н2 = 2Al + 3Н2О.

А потом получим гидроксид.

Чтобы получить гидроксид, надо растворить алюминий в кислоте (для примера, во фтороводородной): 2Al + 6HF = 2AlF3 + 3Н2. А затем прогидролизовать полученную соль с добавлением равного количества щелочи в разбавленном растворе: AlF3 +3NaOH = Al(ОН)3 + 3NaF.

И дальше: Al(ОН)3 + NaOH = Na[Al(ОН)4]

(Al(ОН)3 - амфотерное соединение, которое может взаимодействовать и с кислотами, и с щелочами).

Тетрагидроксоалюминат натрия отлично растворяется в воде, а еще это вещество широко применяют в оформлении и добавляют в бетон, чтобы ускорить отвердевание.

Про метаалюминаты

Про лабораторные действия с оксидом алюминия

Начинающие производители глинозема, наверное, задавались вопросом: "Как из оксида алюминия получить метаалюминат натрия?"

Алюминаты используются в широком производстве для ускорения некоторых реакций, окрашивания тканей и получения глинозема.

Лирическое отступление: глинозем - это, по сути, и есть оксид алюминия Al2О3.

Обычно оксид добывают из метаалюминатов, но здесь будет рассмотрен "обратный" способ.

Итак, чтобы получить наш алюминат, нужно просто смешать оксид натрия с оксидом алюминия при очень высокой температуре.

Случится реакция соединения - Al2О3 + Na2О = 2NaAlO2

Для нормального протекания требуется температура в 1200°C.

Можно проследить за изменением энергии Гиббса в реакции:

Na2O(к.)+ Al2O3(к.)= 2NaAlO2(к.), ΔG0298= -175 кДж.

Еще одно лирическое отступление:

Энергия Гиббса (или "свободная энергия Гиббса") - это зависимость, которая существует между энтальпией (энергией, доступной для преобразований) и энтропией (мерой "хаоса", беспорядка в системе). Абсолютное значение измерить невозможно, поэтому измеряются изменения во время протекания процесса. Формула: G (энергия Гиббса) = Н (изменение энтальпии между продуктами и исходными веществами реакции) - Т (температура) * S (изменение энтропии между продуктами и исходниками). Измеряется в Джоулях.

Как из оксида алюминия получить алюминат?

Для этого подойдет и тот способ, который был рассмотрен выше - с глиноземом и натрием.

Оксид алюминия, смешанный с оксидом другого металла при высоких температурах, и дает метаалюминат.

Но еще можно сплавить гидроксид алюминия со щелочью в присутствии оксида углерода СО:

Al(ОН)3 + NaOH = NaAlO2 + 2Н2О.

Примеры:

  • Al2О3 + 2КОН = 2KAlO2 + Н2О (здесь глинозем растворяется в едкой щелочи калия) - алюминат калия;
  • Al2О3 + Li2О = 2LiAlO2 - алюминат лития;
  • Al2О3 + СаО = СаО × Al2О3 - сплавление оксида кальция с окисью алюминия.

Получение сульфата алюминия

Сульфат алюминия

Как получить сульфат алюминия из оксида алюминия?

Способ включен в школьную программу восьмых и девятых классов.

Сульфат алюминия - это соль вида Al2(SO4)3. Представлена может быть в виде пластинок или порошка.

Это вещество может разлагаться на оксиды алюминия и серы при температуре от 580 градусов. Сульфат используется для очистки воды от мельчайших частиц, очень полезен в пищевой, бумажной, тканевой и других отраслях производства. Он широко доступен благодаря своей низкой цене. Очистка воды происходит из-за некоторых особенностей сульфата.

Дело в том, что загрязняющие частицы имеют вокруг себя двойной электрический слой, а рассматриваемый реагент является коагулянтом, который, при проникновении в электрическое поле частиц, вызывает сжатие слоев и нейтрализует заряд частиц.

Теперь о самом методе. Чтобы получить сульфат, нужно смешать оксид и серную (не сернистую) кислоту.

Выходит реакция взаимодействия глинозема с кислотой:

Al2O3+3h3SO4=Al2(SO4)3+h3O

Вместо оксида можно добавить сам алюминий или его гидроксид.

В промышленности для получения сульфата используют уже известную из третьей части этой статьи руду - боксит. Ее обрабатывают серной кислотой и получают "загрязненный" сульфат алюминия. В боксите содержится гидроксид, а реакция в упрощенном виде выглядит так:

3h3SO4 + 2Al(OH)3 = Al2(SO4)3 + 6h3O

Бокситы

Боксит - это руда, состоящая сразу из нескольких минералов: железа, бемита, гиббсита и диаспора. Является главным источником добычи алюминия, образуется путем выветривания. Крупнейшие месторождения бокситов находятся в России (на Урале), США, Венесуэле (река Ориноко, штат Боливар), Австралии, Гвинее и Казахстане. Эти руды бывают моногидратными, тригидратными и смешанными.

Получение оксида алюминия

Про глинозем выше сказано много, но до сих пор не описано, как получить оксид алюминия. Формула - Al2О3.

А нужно всего-навсего сжечь алюминий в кислороде. Горение - процесс взаимодействия О2 и другого вещества.

Простейшее уравнение реакции выглядит следующим образом:

4Al + 3О2 = 2Al2О3

Оксид не растворяется в воде, но он хорошо растворим в криолите при высокой температуре.

Свои химические свойства оксид проявляет при температуре от 1000°С. Именно тогда он начинает взаимодействовать с кислотами и щелочами.

В естественных условиях корунд является единственный устойчивой вариацией вещества. Корунд очень твердый, с плотностью примерно 4000 г/м3. Твердость этого минерала по шкале Мооса - 9.

Минерал корунд

Оксид алюминия - амфотерный оксид. Легко преобразовывается в гидроксид (см. выше), а превратившись, сохраняет все свойства своей группы с преобладанием основных.

Амфотерные оксиды - это оксиды, которые могут проявлять как основные (свойства оксидов металлов), так и кислотные (оксидов неметаллов) свойства в зависимости от условий.

К амфотерным оксидам, исключая оксид алюминия, относятся: оксид цинка (ZnO), оксид бериллия (ВеО), оксид свинца (PbO), оксид олова (SnO), оксид хрома (Cr2О3), оксид железа (Fe2О3) и оксид ванадия (V2О5).

Соли: комплексные и не очень

Бывают средние (нормальные), кислые, основные и комплексные.

Средние соли состоят из самого металла и кислотного остатка и имеют вид AlCl3 (хлорид алюминия), Na2SO4 (сульфат натрия), Al(NO3)3 (нитрат алюминия) или MgPO4.

Кислые соли - это соли из металла, водорода и кислотного остатка. Их примеры: NaHSO4, CaHPO4.

Основные соли так же, как и кислые, состоят из кислотного остатка и металла, но вместо Н там ОН. Примеры: (FeOH)2SO4, Ca(OH)Cl.

И, наконец, комплексные соли - это вещества из ионов разных металлов и кислотного остатка многоосновной кислоты (соли, содержащие сложный ион): Na3[Co(NO2)6], Zn[(UO2)3(Ch4COO)8].

Речь пойдет о том, как из оксида алюминия получить комплексную соль.

Условием превращения оксида в это вещество является его амфотерность. Глинозем отлично подходит для метода. Чтобы получить комплексную соль из оксида алюминия, нужно смешать этот оксид с раствором щелочи:

2NaOH + Al2O3 + h3O → Na2[Al(ОН)4]

Этот род веществ также образуется при воздействии растворов щелочей на амфотерные гидроксиды.

Раствор гидроксида калия взаимодействует с основанием цинка с получением тетрагидроксоцинката калия:

2KOH + Zn(OH)2 → K2[Zn(OH)4]

Раствор щелочи натрия реагирует, например, с гидроксидом берилия с образованием тетрагидроксобериллата натрия:

NaOH + Be(OH)2 → Na2[Be(OH)4]

Использование солей

Схема комплексной соли

Комплексные соли алюминия часто используют в фармацевтике, производстве витаминов и биологически активных веществ. Препараты, созданные на основе этих веществ, помогают в борьбе с похмельем, улучшают состояние желудка и общее самочувствие организма человека. Очень полезные соединения, как можно заметить.

Реактивы дешевле покупать в интернет-магазинах. Там большой выбор веществ, но сайты лучше выбирать надежные и проверенные временем. Если покупать что-то на «однодневках», то риск потерять деньги увеличивается.

При работе с химическими элементами нужно соблюдать правила безопасности: обязательно наличие перчаток, защитного стекла, специализированной посуды и приборов.

Эпилог

Химия – несомненно, сложная для понимания наука, но иногда полезно в ней разобраться. Проще всего это сделать через интересные статьи, простой слог и понятные примеры. Не лишним будет прочитать пару книг по теме и освежить в памяти курс школьной программы по химии.

Здесь было разобрано большинство тем химии, связанных с преобразованиями алюминия и его оксидов, в том числе, как из оксида алюминия получить тетрагидроксоалюминат, и еще множество интересных фактов. Оказалось, что у алюминия есть много самых необычных сфер применения в производстве и в быту, да и история получения металла весьма незаурядна. Химические формулы соединений алюминия тоже заслуживают внимания и подробного разбора, что и было освящено в этой статье.

fb.ru

Способ получения сульфата алюминия

 

Изобретение относится к технологии неорганических веществ, в частности, к производству сульфата алюминия, который может быть использован в качестве коагулянта для очистки питьевых и сточных вод, а также в производстве катализаторов и адсорбентов. Способ получения сульфата алюминия включает разложение водной суспензии гидроксида алюминия серной кислотой при молярном отношении Al2O3: SO3= 1: (2-2,6), содержании в реакционной массе 18-20% Al2O3. Серную кислоту дозируют в две стадии: на первой стадии дозируют 10-20% от общего количества серной кислоты со скоростью 0,1-0,3 л/мин на 10 кг Al2O3, а остальное количество дозируют на второй стадии со скоростью 0,6-0,9 л/мин Al2O3, после окончания дозировки реакционную массу выдерживают в течение 20-30 мин, затем проводят кристаллизацию. Данное изобретение позволяет сократить длительность процесса и обеспечивает получение сульфата алюминия высокого качества. 4 з.п. ф-лы, 1 табл.

Изобретение относится к технологии неорганических веществ, в частности к производству сульфата алюминия, который может быть использован в качестве коагулянта для очистки питьевых и сточных вод, а также в производстве катализаторов и адсорбентов.

Известен способ получения сульфата алюминия путем обработки пульпы гидроксида алюминия серной кислотой с образованием плава, кристаллизации плава за счет его охлаждения (М.Е. Позин. Технология минеральных солей, т. 1, л.: Химия, 1974, с. 645). Недостатком этого способа является низкое содержание основного вещества ~ 14% в пересчете на оксид алюминия. Кроме этого на стадии кристаллизации используют для охлаждения плава дополнительные реагенты. Известен способ получения кристаллогидрата сульфата алюминия - патент РФ 2152356, МПК 7 C 01 F 7/74, 2000), который включает репульпацию гидроксида алюминия в воде, смешение пульпы с серной кислотой с образованием плава, выдержку последнего при 100-120oС для полного разложения гидроксида алюминия, введение в плав мелкодисперсной затравки, отверждение охлажденного воздухом плава путем его кристаллизации на охлаждаемой и смачиваемой водой движущейся поверхности. Выдержку плава ведут при 100-120oС, а в качестве затравки используют кислую соль сульфата алюминия с мольным отношением Аl2О3: h3SO4 диапазоне 2:1-1:1, содержащую 35-50% кристаллизационной воды. Предлагаемый способ позволяет интенсифицировать процесс на всех стадиях, однако недостатком является длительность процесса и необходимость ввода на стадии кристаллизации в качестве затравки кислой соли сульфата алюминия, при этом способе содержание основного вещества - оксида алюминия не превышает 16,7 мас.%. Известен способ получения сернокислого алюминия (а.с. СССР 1135715, MПK 4 C 01 F 7/74, 1985), который включает обработку водной суспензии гидроокиси алюминия серной кислотой, перемешивание полученного плава острым паром и его кристаллизацию. Перед обработкой серной кислотой в водную суспензию гидроокиси алюминия вводят 0,01-0,1% олеиновой кислоты или силиката натрия от веса гидроокиси алюминия и подвергают размолу. Недостатком способа являются повышенные энергозатраты, т.к. используется острый пар и вводятся дополнительные вещества для повышения стабильности суспензии гидроксида алюминия. Наиболее близким техническим решением является способ получения коагулянта основного сульфата алюминия (а. с. СССР 1789508, МПК 5 C 01 F7/74, 1993), который реализуется следующим образом: в автоклаве готовят водную суспензию гидроксида алюминия с плотностью 1,6-1,8 г/см3, затем добавляют концентрированную техническую серную кислоту (92-95%) исходя из молярного отношения SO3:Аl2О3, равного 2,0-2,6. Процесс осуществляют без внешнего подвода тепла при 125-150oС и постоянном интенсивном перемешивании реакционной смеси. Взаимодействие завершается за 30-70 мин. Полученный расплав основного сульфата алюминия при температуре 95-100oС разбавляют холодной водой до содержания в нем 16,8-17,5% Аl2О3 и кристаллизуют полученный продукт в течение 40-70 мин. Недостатком этого способа является дополнительное использование холодной воды на стадии кристаллизации и длительность процесса. Задачей, решаемой настоящим изобретением, является разработка способа получения сульфата алюминия с высоким содержанием основного продукта с наименьшими тепловыми затратами, без введения дополнительных реагентов и охлаждающей воды. Поставленная задача решается с помощью способа получения сульфата алюминия, который включает разложение водной суспензии гидроксида алюминия серной кислотой при молярном отношении Аl2О3:SO3=1:(2-2,6), содержании в реакционной массе 18-20% Аl2О3, кристаллизацию продукта, серную кислоту дозируют в две стадии: на первой стадии дозируют 10-20% от общего количества серной кислоты со скоростью 0,1-0,3 л/мин на 10 кг Аl2О3, а остальное количество дозируют на второй стадии со скоростью 0,6-0,9 л/мин на 10 кг Аl2О3, после окончания дозировки реакционную массу выдерживают в течение 20-30 минут, затем проводят кристаллизацию. Гидроксид алюминия предпочтительно подвергают предварительному размолу в дисмембраторе до размера частиц 40-50 мкм. Для приготовления водной суспензии гидроксида алюминия используют подогретую воду до температуры 60-70oС, дозировку серной кислоты на первой стадии проводят, предпочтительно, со скоростью 0,2 л/мин на 10 кг Аl2О3, а на второй стадии со скоростью 0,8 л/мин. на 10 кг Аl2О3. Дозировку серной кислоты, предпочтительно, осуществляют автоматически. Отличие заявляемого способа получения сульфата алюминия от известного состоит в том, что проводят дозировку серной кислоты в две стадии, при этом создаются оптимальные условия взаимодействия суспензии гидроксида алюминия с концентрированной технической серной кислотой (92-97%). На первой стадии при медленном добавлении до 20% от расчетного количества серной кислоты к водной суспензии гидроксида алюминия при перемешивании за счет сильного разбавления серной кислоты и реакции нейтрализации реакционная смесь разогревается до 100-110oС. Затем проводят вторую ускоренную стадию подачи серной кислоты. На этой стадии реакция нейтрализации проходит также с подъемом температуры до 140oС. После прекращения дозировки серной кислоты реакционную смесь выдерживают 20-30 минут и затем проводят кристаллизацию. Такое разложение водной суспензии гидроксида алюминия серной кислотой позволяет не добавлять перед кристаллизацией дополнительно холодную воду в реакционную массу в отличие от известного способа, в котором перед кристаллизацией реакционную массу разбавляют водой до содержания основного вещества Аl2О3 в количестве 16,8-17,5%. Предлагаемый способ получения сульфата алюминия имеет минимальные тепловые затраты за счет исключения подвода тепла извне, нет расхода дополнительных реагентов, процесс разложения гидроксида алюминия протекает быстро и получаемый сульфат алюминия имеет высокое содержание основного вещества и малое количество нерастворимых примесей, при этом образуется реакционная масса с теплопроводностью, приводящей к ускорению кристаллизации. Для дозировки серной кислоты предпочтительно использовать датчики для автоматической подачи серной кислоты в реакционную массу. Способ получения сульфата алюминия реализуется следующим образом. В эмалированный аппарат из мерника загружают необходимое количество воды с температурой, равной 60oС, включают мешалку, загружают гидроксид алюминия и проводят дозировку серной кислоты в две стадии. На первой стадии серную кислоту дозируют с меньшей скоростью. Температура на этой стадии поднимается до 100-110oС. На второй стадии ускоряют дозировку серной кислоты, температура при этом повышается до 140oС. После окончания дозировки серной кислоты реакционную массу выдерживают в течение 20-30 минут и затем сливают на противни или конвейер, где происходит кристаллизация. Нижеследующие примеры иллюстрируют изобретение. Пример 1 В аппарат из мерника заливают воду в количестве 300 л с температурой 60-70oС, включают якорную мешалку и загружают гидроксид алюминия 319,5 кг с размером частиц 40 мкм. Далее начинают дозировку концентрированной серной кислоты 94% в количестве 300 л, 60 л дозируют со скоростью 0,17 л/мин на 10 кг Аl2О3, на второй стадии со скоростью 0,75 л/мин на 10 кг Аl2О3. Мольное отношение Аl2О3/SO3 составляет 1:2,4. Содержание Аl2О3 в реакционной массе составляет 18,2%. Пример 2 Аналогичен примеру 1, только мольное отношение Аl2О3/SO3=1:2,6 и скорость приливания серной кислоты на первой стадии составляет 0,27 л/мин на 10 кг Аl2О3, а на второй стадии составляет 0,6 л/мин на 10 кг Аl2О3 Пример 3 Аналогичен примеру 1, только мольное отношение Аl2О3/SO3=1:2,3 и скорость приливания серной кислоты на первой стадии составляет 0,2 л/мин на 10 кг Аl2О3, а на второй стадии 0,7 л/мин на 10 кг Аl2О3. содержание Аl2О3 в реакционной массе составляет 20%. Пример 4 Аналогичен примеру 1, только мольное отношение Аl2О3/SO3=1:2,0 и скорость приливания 0,1 л/мин на 10 кг Аl2О3, а на второй стадии 0,85 л/мин на 10 кг Аl2О3 Пример 5 Аналогичен примеру 1, только размер частиц гидроксида алюминия составляет 80 мкм и используют холодную воду для приготовления суспензии гидроксида алюминия. Пример 6 (по прототипу) Аналогичен примеру 1 из прототипа по а.с. СССР 1789508. Таким образом, как видно из представленных примеров и таблицы в предлагаемом решении за счет оптимизации разложения (нейтрализации) гидроксида алюминия серной кислотой получается реакционная масса с теплопроводностью, обеспечивающей быструю кристаллизацию сульфата алюминия без добавления воды. При этом получается сульфат алюминия с высоким качеством.

Формула изобретения

1. Способ получения сульфата алюминия, включающий разложение водной суспензии гидроксида алюминия серной кислотой при молярном отношении Al2O3:SO3= 1: (2-2,6), содержании в реакционной массе 18-20% Al2O3, кристаллизацию продукта, отличающийся тем, что серную кислоту дозируют в две стадии: на первой стадии дозируют 10-20% от общего количества серной кислоты со скоростью 0,1-0,3 л/мин на 10 кг Al2O3, а остальное количество дозируют на второй стадии со скоростью 0,6-0,9 л/мин на 10 кг Al2O3, после окончания дозировки реакционную массу выдерживают в течение 20-30 мин, затем проводят кристаллизацию. 2. Способ по п.1, отличающийся тем, что гидроксид алюминия подвергают предварительному размолу в дисмембраторе до размера частиц 40-50 мкм. 3. Способ по п.1, отличающийся тем, что для приготовления водной суспензии гидроксида алюминия используют подогретую воду до температуры 60-70oС. 4. Способ по п. 1, отличающийся тем, что дозировку серной кислоты на первой стадии проводят со скоростью 0,2 л/мин на 10 кг Al2O3, а на второй стадии 0,8 л/мин на 10 кг Al2O3. 5. Способ по п.1, отличающийся тем, что дозировку серной кислоты осуществляют автоматически.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Как получить алюминий сульфат | Тайны и Загадки истории

Сульфат алюминия – соль с химической формулой Al2(SO4)3. Внешний вид – белые кристаллы, имеющие оттенки разных цветов. Хорошо растворим в воде. Обычно существует в виде кристаллогидрата, где одна молекула соли «удерживает» целых 18 молекул воды – Al2(SO4)3 х 18 Н2О. Как можно получить сульфат алюминия?

1_5254fcde3dcd45254fcde3dd12Кристаллогидрат сульфата алюминия при нагревании легко теряет воду. При последующем сильном нагреве, произойдет распад соли на оксид алюминия и серный ангидрид:Al2(SO4)3 = Al2O3 + 3SO3Соответственно, серный ангидрид при температуре свыше 770 градусов разлагается на сернистый ангидрид и кислород:2SO3 = 2SO2 + O2

Главный способ получения этого продукта в промышленности – обработка серной кислотой какой-либо алюминиевой руды, например, бокситов. В бокситах содержится гидроксид алюминия, наряду с существенными примесями других веществ, главным образом – оксидов кремния и железа. В упрощенном виде, реакцию можно записать так:3h3SO4 + 2Al(OH)3 = Al2(SO4)3 + 6h3O

При использовании этого способа, образуется «загрязненный», технический сульфат алюминия. Разумеется, кроме бокситов, подойдет и другая руда, например, каолиновая или нефелиновая. Можно получать сульфат алюминия и из некоторых промышленных отходов, содержащих гидроксид алюминия (травильных растворов и т.д.).

Если же необходим достаточно чистый продукт, то сначала получают гидроксид алюминия любым подходящим способом, а уж потом воздействуют на него горячей концентрированной серной кислотой. Реакция идет по той же вышеописанной схеме:3h3SO4 + 2Al2(SO4)3 = Al2(SO4)3 + 6h3O

tayni.info

Способ получения сульфата алюминия

Изобретение относится к технологии получения сульфата алюминия, который используют в качестве коагулянта при очистке хозяйственно-питьевых, промышленных и сточных вод, в промышленных и технологических процессах, и может быть использовано на предприятиях, занимающихся переработкой первичных отвальных алюмосодержащих шлаков. Способ получения сульфата алюминия включает предварительную отмывку шлака, содержащего оксид алюминия, от солей, затем обработку его серной кислотой, отделение фильтрацией полученного раствора от песка. Песок промывают, а очищенный раствор после фильтрации подают в кристаллизатор и охлаждают. Отделяют кристаллы сульфата алюминия от маточного раствора, в состав которого входит серная кислота. Кристаллы сульфата алюминия промывают органическим растворителем, сушат и расфасовывают в мешки. После их промывки из оставшейся смеси органического растворителя, воды и серной кислоты отделяют отгонкой органический растворитель при температуре его кипения. Сжиженный органический растворитель используют в последующих промывочных операциях, а маточный раствор, в состав которого входит серная кислота, используют на последующих стадиях обработки шлака. Изобретение позволяет эффективно реализовывать универсальную безотходную, экологически безопасную технологию получения сульфата алюминия. 1 ил.

 

Изобретение относится к технологии получения коагулянтов, которые используются при очистке хозяйственно-питьевых, промышленных и сточных вод, в промышленных и технологических процессах, и может быть использовано на предприятиях, занимающихся переработкой первичных отвальных алюмосодержащих шлаков.

Известен способ переработки отходов алюминиевого производства (варианты) (см. патент RU №2137852, кл. С22В 7/04), заключающийся в том, что отходы алюминиевого производства обрабатывают соляной кислотой или ее солью, которые используют в виде 1-10% водного раствора, выдерживанием при температуре рабочего помещения для полного протекания реакции обезвреживания.

Недостатком известного способа является то, что он не решает проблемы улучшения экологической обстановки, т.к. отходы подлежат дальнейшему хранению.

Наиболее близким аналогом по количеству общих существенных признаков является способ получения сульфата алюминия из шлака, содержащего оксид алюминия, включающий предварительную отмывку шлака от солей, затем обработку его серной кислотой, фильтрацию полученного раствора от песка (см. RU №2220098, 27.12.2003).

Недостатками указанного способа получения сульфата алюминия является загрязнение окружающей среды промышленными отходами, низкая степень конверсии, высокая энергоемкость, низкое качество продукта вследствие загрязненности его различными примесями.

Задачей изобретения является улучшение экологической обстановки за счет переработки отходов алюминиевого производства.

Технический результат заключается в повышении выхода сульфата алюминия с высокой степенью чистоты.

Указанный технический результат достигается способом получения сульфата алюминия, включающий предварительную отмывку шлака, содержащего оксид алюминия, от солей, затем обработку его серной кислотой, отделение фильтрацией полученного раствора от песка, при этом песок промывают, а очищенный раствор после фильтрации подают в кристаллизатор и охлаждают, отделяют кристаллы сульфата алюминия от маточного раствора, в состав которого входит серная кислота, кристаллы сульфата алюминия промывают органическим растворителем, очищенные кристаллы сульфата алюминия сушат и расфасовывают в мешки, после их промывки из оставшейся смеси органического растворителя, воды и серной кислоты отделяют отгонкой органический растворитель при температуре его кипения, сжиженный органический растворитель используют в последующих промывочных операциях, а маточный раствор, в состав которого входит серная кислота, используют на последующих стадиях обработки шлака.

На чертеже показана установка для реализации заявленного способа получения сульфата алюминий.

Установка состоит из реактора 1, вакуум-фильтра 2, кристаллизатора 3, центрифуги 4, промывной центрифуги 5, сушильного барабана 6, испарителя 7, конденсатора 8.

Способ реализуется следующим образом.

Шлак, содержащий оксид алюминия, отмытый от солей, загружают в реактор 1, добавляют воду и серную кислоту, проводят варку 1,5 ч. Полученный раствор отфильтровывают в вакуум-фильтре 2, оставшийся песок промывают водой и используют в качестве строительного материала. Очищенный раствор подают в кристаллизатор 3 и охлаждают. Для сокращения времени кристаллизации добавляют затравку в виде кристаллов готового сульфата алюминия. Образовавшиеся кристаллы сульфата алюминия отделяют от маточного раствора, в состав которого входят серная кислота и вода с растворенными сульфатами железа и других материалов на центрифуге 4. Затем кристаллы сульфата алюминия промывают в промывочной центрифуге 5 органическим растворителем (ацетон, спирт и т.п.). При промывке кристаллов вместе с ацетоном удаляются остатки маточного раствора. Очищенные кристаллы сульфат алюминия сушат в сушильном барабане 6 и расфасовывают в мешки. Промывную смесь ацетона, воды и серной кислоты далее разделяют отгонкой ацетона при температуре кипения ацетона в испарителе 7. Образующиеся пары ацетона с испарителя 7 и сушильного барабана 6 попадают в конденсатор 8. Сжиженный ацетон используется в последующих промывочных операциях. Маточные растворы используются в качестве оборотных в последующих варках сульфата.

Способ позволяет увеличить выход сульфата алюминия до 80% и выше за счет содержания серной кислоты во время варки в два и более раз, по сравнению со стехиометрическим. Увеличение степени конверсии соответственно приводит к уменьшению количества отвала в виде песка и в результате к уменьшению расхода воды на его промывку. При высокой степени конверсии большая часть нежелательных примесей в виде сульфата железа и пр. замещается на сульфат алюминия и переходит в песок. Накопления примесей в маточном растворе не происходит. Используя кристаллизацию, как способ выделения сульфата алюминия из его раствора, с последующей промывкой кристаллов ацетоном, позволяет получить продукт высокой степени чистоты. Задавая в два и более раз соотношение кислоты, по сравнению со стехиометрическим во время варки, с последующим разбавлением водой до содержания в растворе Al2(SO4)3×36Н2О позволяет:

- получить раствор сульфата алюминия после фильтрации с низким содержанием растворимых примесей;

- максимально высадить кристаллы из раствора до 92-95%;

- исключить из схемы упаривание излишней воды;

- исключить из схемы загрязненные стоки.

Заявляемый способ не является энергоемким, так как реакция взаимодействия шлака с серной кислотой является экзотермической(с выделением тепла), это тепло, в свою очередь, поддерживает реакцию при Т 110-160°С.

Все последующие операции, включая сушку кристаллов и испарение ацетона, происходят при низких плюсовых температурах и не требуют больших энергетических затрат.

Способ позволяет получить кристаллы сульфата алюминия от Al2(SO4)×18Н2O до безводного и соответствовать ГОСТу 12966-85 (протокол результатов анализа прилагается).

Полученный сульфат алюминия соответствует санитарным нормам и правилам, (санитарно-эпидемиологическое заключение №63.сц.06.214.П.001858.05.06 от 03 мая 2006 г. прилагается)

Предлагаемый способ позволяет эффективно реализовывать универсальную безотходную, экологически безопасную технологию получения сульфата алюминия.

Способ получения сульфата алюминия, включающий предварительную отмывку шлака, содержащего оксид алюминия, от солей, затем обработку его серной кислотой, отделение фильтрацией полученного раствора от песка, отличающийся тем, что песок промывают, а очищенный раствор после фильтрации подают в кристаллизатор и охлаждают, отделяют кристаллы сульфата алюминия от маточного раствора, в состав которого входит серная кислота, кристаллы сульфата алюминия промывают органическим растворителем, очищенные кристаллы сульфата алюминия сушат и расфасовывают в мешки, после их промывки из оставшейся смеси органического растворителя, воды и серной кислоты отделяют отгонкой органический растворитель при температуре его кипения, сжиженный органический растворитель используют в последующих промывочных операциях, а маточный раствор, в состав которого входит серная кислота, используют на последующих стадиях обработки шлака.

www.findpatent.ru

способ получения сульфата алюминия - патент РФ 2355639

Изобретение относится к области гидрометаллургии, в частности к способам переработки высококремнистого алюминиевого сырья с получением сульфата алюминия. Способ включает обработку алюминийсодержащего сырья - каолина 95%-ной серной кислотой и термообработку полученной реакционной массы. Используют каолин с массовой долей оксида алюминия, равной 20-27%, который перед смешиванием с серной кислотой увлажняют. Термообработку реакционной массы проводят при 320-350°С в течение 3-х часов, после этого сульфатный продукт выщелачивают водой при соотношении Т:Ж, равном 1:3, и температуре 80-90°С до конечной величины рН, равной 3,5-4,0. Полученную пульпу фильтруют, фильтрат упаривают до плотности 1,45 г/см3 и кристаллизуют сульфат алюминия. Изобретение позволяет повысить степени извлечения оксида алюминия в раствор. 2 з.п. ф-лы.

Область техники

Изобретение относится к области гидрометаллургии, в частности к способам переработки высококремнистого алюминиевого сырья с получением сульфата алюминия.

Предшествующий уровень техники

Известен способ получения алюминийсодержащего коагулянта из нефелиновых отходов (см. аналог - а.с. 1399268, кл. C01F 7/74, публ. 30.05.1988 г.). В данном способе в качестве нефелиновых отходов апатитового производства используют пульпу хвостов апатитовой флотации с содержанием 15-25 мас.% твердого. Для повышения качества коагулянта отходы апатитового производства смешивают с 15-25%-ной серной кислотой, твердый остаток отделяют от серно-кислотного раствора. Серно-кислотный раствор разбавляют водой до концентрации 10-30 г/л Al2O3, нагревают до 40-80°С и выдерживают при этой температуре в течение 0,5-0,6 ч. Недостатком данного способа является сложность аппаратурной схемы и невысокая степень извлечения Al2O3 в раствор.

Известен способ получения коагулянта на основе сульфата алюминия из геленитового шлака (см. аналог - а.с. 1742214, кл. C01F 7/74, публ. 23.06.1992 г.). Способ включает выщелачивание шлака серной кислотой с последующим отделением фильтрата. Для повышения степени извлечения оксида алюминия в раствор для выщелачивания используют 35-45%-ную серную кислоту и процесс выщелачивания ведут при 75-80°С в течение 45-60 мин. Недостатком данного способа является необходимость измельчения шлака, что значительно удорожает процесс.

Известен способ получения алюмосодержащего коагулянта из золы (ближайший аналог - RU 2053200, кл. C01F 7/74, C02F 1/52, публ. 1996.01.27), включающий обработку золы от сжигания углей концентрированной серной кислотой в количестве 80-85% от стехиометрически необходимого при 300-350°С в течение 60-80 мин. Полученный спек выщелачивают водой при 80°С в течение 30 мин в соотношении Ж:Т=3,5-4,0. Затем смесь фильтруют, упаривают и подвергают сушке. Извлечение в раствор оксида алюминия Al 2O3 составляет 80-84%. Недостатком данного способа является относительно невысокая степень извлечения Al2 O3 в раствор.

В качестве ближайшего аналога принят способ получения сульфата алюминия из алюминийсодержащего сырья - каолина (патент BG 51038, кл. C01F 7/74, опубл. 29.01.1993), включающий обработку каолина 95%-ной серной кислотой в количестве 100% от стехиометрически необходимого количества, а затем термообработку реакционной массы с переработкой на очищенный сульфат алюминия. Недостатком данного способа является относительно невысокая степень извлечения Al2O3 в раствор.

Раскрытие изобретения

Задача изобретения направлена на повышение степени извлечения оксида алюминия (Al2 O3) в раствор.

Для решения поставленной задачи в способе получения сульфата алюминия, включающем обработку алюминийсодержащего сырья - каолина 95%-ной серной кислотой и термообработку полученной реакционной массы, предлагается по изобретению использовать каолин с массовой долей оксида алюминия, равной 20-27%, который перед смешиванием с серной кислотой увлажняют, термообработку реакционной массы проводят при 320-350°С в течение 3-х часов, после этого сульфатный продукт выщелачивают водой при соотношении Т:Ж, равном 1:3, и температуре 80-90°С до конечной величины рН, равной 3,5-4,0, полученную пульпу фильтруют, фильтрат упаривают и кристаллизуют сульфат алюминия.

Фильтрат упаривают до плотности 1,45 г/см3.

Выщелачивание осуществляют в течение 3 часов.

Предлагаемый способ осуществляется следующим образом.

Исходный предварительно увлажненный каолин с массовой долей оксида алюминия, равной 20-27%, смешивают с серной кислотой 95%-ной концентрации в количестве 100% от теоретически необходимого количества (далее по тексту - ТНК). После этого реакционную массу нагревают до 320-350°С и выдерживают при этой температуре приблизительно 3 часа. Получают сульфатный продукт и небольшой объем газов, состоящий в основном из паров воды и незначительного количества сернистого (SO2) и серного (SO3) ангидрида. Затем сульфатный продукт выщелачивают водой при соотношении Т:Ж=1:3, 80-90°С в течение 3 часов и до достижения конечной величины рН до 3,5-4,0. Для доведения рН до 4,0 пульпу нейтрализуют прокаленным каолином в заданном количестве при перемешивании в течение 1 часа. После этого пульпу фильтруют - отделяют нерастворимый остаток от фильтрата. С нерастворимым остатком отделяется основное количество железа и сульфат кальция. А фильтрат упаривают до плотности 1,45 г/см3 и кристаллизуют сульфат алюминия (технический, очищенный) химической формулой Al2(SO4) 3*nh3O, где n - количество молекул воды.

Таким образом, при перемешивании предварительно увлажненного каолина с серной кислотой 95%-ной концентрации в количестве 100% от ТНК и последующем прогреве реакционной массы разрушается основной минерал - каолинит, при этом высвобождаются оксиды алюминия и кремния и образуется водорастворимый сульфат алюминия по реакции:

способ получения сульфата алюминия, патент № 2355639,

где n - количество молекул воды.

Варианты осуществления изобретения

Пример 1. В качестве исходного алюминийсодержащего сырья используют навеску увлажненного каолина массой 1 кг состава, %: Al2 O3 22,0; Fe2O3 2,1; SiO 2 63,0; СаО 0,45; MgO 0,05; TiO 0,57; K2O+Na 2O 2,1, которую смешивают до тестообразного состояния с 310 мл серной кислоты 95%-ной концентрации в количестве 100% от ТНК. Затем реакционную массу помещают в нагревательную печь, доводят температуру до 320-350°С и выдерживают в течение 3 часов до исчезновения белых паров (сернистого (SO2 ) и серного (SO3) ангидрида). Токсичных компонентов в газах не обнаружено. По окончании процесса продукт выгружают из печи, охлаждают и направляют в реактор на выщелачивание. В реактор заливают воду из расчета Т:Ж=1:3 и выдерживают при перемешивании и 80-90°С в течение 3 часов до достижения конечной величины рН 3,5-4,0. Для достижения рН до 4,0 (при необходимости) в реактор загружают прокаленный каолин в расчетном количестве для связывания свободной серной кислоты. При величине рН 4,0 (примерно) создаются условия для выведения железа в осадок. После этого пульпу отстаивают и фильтруют на вакуум или нутч-фильтре с отделением фильтрата от нерастворимого остатка. Фильтрат с первоначальной плотностью 1,24-1,27 г/см3 (90 г/л Al2SO3 ) упаривают до плотности 1,45 г/см3. Затем плав сульфата алюминия выгружают на стол-кристаллизатор, где за счет естественного охлаждения происходит кристаллизация сульфата алюминия. Продукт взвешивают и анализируют на содержание оксида алюминия и присутствующих примесей.

В данном примере получен образец сульфата алюминия химической формулой Al2(SO4) 3 * nh3O, n - количество молекул воды. По внешнему виду - соль в виде плотных кусков мелкокристаллического строения, имеет белый цвет с голубым оттенком.

Образец имеет состав (массовая доля, %):

Оксид алюминия - 15,6

Нерастворимый остаток в воде - 0,5

Железо в перерасчете на оксид железа - 0,15

Свободная серная кислота (h3SO4) - 0,1

Мышьяк в перерасчете на оксид мышьяка - не обнаружен

Извлечение оксида алюминия в раствор составило 91,8%.

Пример 2. В качестве исходного алюминийсодержащего сырья используют каолин с массовой долей Al2О3 25,0%; Fe 2О3 1,5%, который увлажняют до влажности 10-12% и смешивают с (расчетным количеством) 353 мл серной кислоты 95%-ной концентрации в количестве 100% от ТНК. Затем реакционную массу нагревают в печи и выдерживают при 320-350°С в течение 3 часов до исчезновения белых паров (сернистого (SO2 ) и серного (SO3) ангидрида). Токсичных компонентов в газах не обнаружено. Полученный сульфатный продукт засыпают в реактор и выщелачивают водой из расчета Т:Ж=1:3 при перемешивании и температуре 80-90°С в течение 3 часов до достижения конечной величины рН 3,5-4,0. В конце перемешивания замеряют конечную величину рН, наличие свободной серной кислоты определяют титрованием. При наличии свободной серной кислоты проводят нейтрализацию прокаленным каолином до достижения конечной величины рН 4,0. Для этого в реактор вводят при перемешивании заданное количество прокаленного каолина.

По окончании перемешивания пульпу отстаивают и фильтруют с отделением нерастворимого остатка. Фильтрат упаривают до плотности 1,45 г/см3, затем плав сульфата алюминия кристаллизуют на кристаллизационном столе.

В данном примере получен образец белого цвета с розовым оттенком в количестве 1420 г.

Образец имеет состав (массовая доля, %):

Оксид алюминия - 15,8

Нерастворимый остаток в воде - 0,7

Железо в перерасчете на оксид железа - 0,15

Свободная серная кислота (H 2SO4) - 0,1

Мышьяк в перерасчете на оксид мышьяка - не обнаружен

Извлечение оксида алюминия в раствор составило 92,0%.

Пример 3. Опыт проведен аналогично примеру 1. Исходный каолин в количестве 1 кг с массовой долей Al2О3 27,0%; Fe 2О3 1,0% смачивают водой и смешивают с (расчетным количеством) 382 мл серной кислоты 95%-ной концентрации в количестве 100% от ТНК. Затем реакционную массу нагревают и выдерживают при 350°С в течение 3 часов. После этого сульфатный продукт выщелачивают водой из расчета Т:Ж=1:3 при 80-90°С в течение 3 часов до достижения конечной величины рН 4,0. Пульпу фильтруют на нутч-фильтре. Получают фильтрат объемом 2,40 л с содержанием Al2O3 101 г/л, Fe2O3 0,59 г/л. Фильтрат упаривают до плотности 1,45 г/см3 и кристаллизуют сульфат алюминия. В данном примере получен образец, имеющий состав (массовая доля, %):

Оксид алюминия - 16,5

Железо в перерасчете на оксид железа - 0,1

Свободная серная кислота (h3SO 4) - 0,1

Мышьяк в перерасчете на оксид мышьяка - не обнаружен

Извлечение оксида алюминия в раствор составило 92,0%.

В предлагаемом способе получения сульфата алюминия в качестве алюминийсодержащего сырья использован каолин с массовой долей Al2О3 20-27,0%. Применять каолин с содержанием оксида алюминия (Al2 O3) ниже 20% не экономично, а выше 27% - каолин-сырец нужно обогащать, что ведет к удорожанию процесса. В конкретных вышеописанных примерах использован каолин, который является дешевым отходом угледобычи.

Расход серной кислоты 95%-ной концентрации в количестве 100% от ТНК обусловлен тем, что выше этого предела в фильтрате появляется свободная серная кислота, наличие которой в целевом продукте нежелательно, так как может вызвать коррозию аппаратуры, а ниже этого предела не достигается заданная степень извлечения оксида алюминия в раствор.

Термообработка реакционной массы при 320-350°С является оптимальной и достаточной для протекания и завершения реакции образования сульфата алюминия. Если температура будет выше 350°С, возрастут энергозатраты, а переход оксида алюминия в раствор остается на том же уровне, если ниже 320°С, падает извлечение оксида алюминия в раствор.

Продолжительность термообработки реакционной массы 3 часа является оптимальной, поскольку за ее пределами, например, меньше 3 часов - степень сульфатообразования падает, а выше 3 часов - остается на том же уровне.

Аппаратурно-технологическая схема получения сульфата алюминия проста и управляема. Полученный по предлагаемому способу сульфат алюминия, технически очищенный формулой Al2(SO 4)3 * nh3O, соответствует требованиям и нормам ГОСТ № 12966-85 и предназначается для очистки воды хозяйственно-питьевого назначения, а также для использования в бумажной, текстильной, кожевенной и других отраслях промышленности.

Также вышеописанный способ позволяет рационально использовать минеральное сырье за счет комплексной переработки каолина: нерастворимый остаток (кек), содержащий 74-78% SiO2 и 2,5-3,6% Al 2O3, после выщелачивания, промывки и сушки может быть направлен в цементную промышленность или стройиндустрию.

Использование изобретения по сравнению с ближайшим аналогом обеспечивает высокую степень извлечения оксида алюминия (Al2О3) в раствор.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения сульфата алюминия, включающий обработку алюминийсодержащего сырья - каолина 95%-ной серной кислотой и термообработку полученной реакционной массы, отличающийся тем, что используют каолин с массовой долей оксида алюминия, равной 20-27%, который перед смешиванием с серной кислотой увлажняют, термообработку реакционной массы проводят при 320-350°С в течение 3-х ч, после этого сульфатный продукт выщелачивают водой при соотношении Т:Ж, равном 1:3, и температуре 80-90°С до конечной величины рН, равной 3,5-4,0, полученную пульпу фильтруют, фильтрат упаривают и кристаллизуют сульфат алюминия.

2. Способ получения сульфата алюминия по п.1, отличающийся тем, что фильтрат упаривают до плотности 1,45 г/см3.

3. Способ получения сульфата алюминия по п.1, отличающийся тем, что выщелачивание осуществляют в течение 3 ч.

www.freepatent.ru