Алгебра. Урок 5. Графики функций. Функция как решать


Алгебра. Урок 5. Графики функций

 

Содержание страницы:

 

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) — горизонтальная ось.

Ось ординат (ось y ) — вертикальная ось.

декартова система координат

 

Функция — это отображение элементов множества X на множество Y. При этом каждому элементу x множества X соответствует одно единственное значение y множества Y.

 

Линейная функция – функция вида y=ax+b где a и b — любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b:

 

Если a>0, прямая будет проходить через I и III координатные четверти.

b — точка пересечения прямой с осью y.

График линейной функции, a < 0

 

Если a<0, прямая будет проходить через II и IV координатные четверти.

b — точка пересечения прямой с осью y.

График линейной функции, a > 0

 

Если a=0, фукция принимает вид y=b.

График линейной функции y = b

 

Отдельно выделим график уравнения x=a.

Важно: это уравнение не является функцией так как нарушается определение функции (функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y. Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

График уравнения x = a

 

Графиком функции y=ax2+bx+c является парабола.

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a,b,c:

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a>0 , ветки параболы направлены вверх.
  • Если a<0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y.
  2. Коэффициент b помогает найти xв — координату вершины параболы.

xв=−b2a

  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D>0 — две точки пересечения.
  • Если D=0 — одна точка пересечения.
  • Если D<0 — нет точек пересечения.

 

Графиком функции y=kx является гипербола.

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k>0, то ветви гиперолы проходят через I и III четверти.

Гипербола

Если k  <  0, ветви гиперболы проходят через II и IV четверти.

Гипербола

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y.

ГиперболаГипербола

 

Функция y  =  x имеет следующий график:

График квадратного корня

 

Функция y = f(x)возрастает на интервале, если большему значению аргумента (большему значению x) соответствует большее значение функции (большее значение y).

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Возрастающие функции

Функция y = f(x)убывает на интервале, если большему значению аргумента (большему значению x) соответствует меньшее значение функции (большее значение y).

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Убывающие функции

Для того, чтобы найти наибольшее значение функции, находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y). Это значение и будет являться наибольшим значением функции.

Наибольшее значение функции

Для того, чтобы найти наименьшее значение функции, находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y). Это значение и будет являться наименьшим значением функции.

Наименьшее значение функции

 

 

Скачать домашнее задание к уроку 5.

 

epmat.ru

Функции и графики - Математика - Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Координаты и базовые понятия о функциях

К оглавлению...

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует. Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

 

График линейной функции

К оглавлению...

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

 

График квадратичной функции (Парабола)

К оглавлению...

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x1; 0) и (x2; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x0; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax2 + bx + c, то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

 

Графики других функций

К оглавлению...

Степенной функцией называют функцию, заданную формулой:

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x| выглядит следующим образом:

 

Графики периодических (тригонометрических) функций

К оглавлению...

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x). Если функция f(x) является периодической с периодом T, то функция:

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой:

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

educon.by

Квадратичная функция и ее график

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.Итак.

Функция вида y=ax^2+bx+c, где a<>0  называется квадратичной функцией.

В уравнении квадратичной функции:

a - старший коэффициент

b - второй коэффициент

с  - свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции y=x^2 имеет вид:

Обратите внимание на точки, обозначенные зелеными кружками - это, так называемые "базовые точки". Чтобы найти координаты этих точек для функции y=x^2, составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент a=1, то график квадратичной функции имеет ровно такую же форму, как график функции y=x^2 при любых значениях остальных коэффициентов.

График  функции y=-x^2 имеет вид:

Для нахождения координат базовых точек составим таблицу:

 

Обратите внимание, что график функции y=-x^2 симметричен графику функции y=x^2 относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.

Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.

Второй параметр для построения графика  функции - значения х, в которых функция равна нулю, или нули функции. На графике нули функции f(x) - это точки пересечения графика функции y=f(x) с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты  точек  пересечения графика функции y=f(x) с осью ОХ, нужно решить уравнение f(x)=0.

В случае квадратичной функции y=ax^2+bx+c нужно решить квадратное уравнение .

Теперь внимание!

В процессе решения квадратного уравнения мы находим дискриминант: D=b^2-4ac, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если D<0 ,то уравнение ax^2+bx+c=0 не имеет решений, и, следовательно, квадратичная парабола y=ax^2+bx+c не имеет точек пересечения с осью ОХ. Если a>0 ,то график функции выглядит как-то так:

2. Если D=0 ,то уравнение ax^2+bx+c=0  имеет одно решение, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет одну точку пересечения с осью ОХ. Если a>0 ,то график функции выглядит примерно так:

3.  Если D>0 ,то уравнение ax^2+bx+c=0  имеет два решения, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет две точки пересечения с осью ОХ:

x_1={-b+sqrt{D}}/{2a},  x_2={-b-sqrt{D}}/{2a}

Если a>0 ,то график функции выглядит примерно так:

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Следующий важный параметр графика квадратичной функции - координаты вершины параболы:

 

x_0=-{b/{2a}}

y_0=-{D/{4a}}=y(x_0)

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции - точка пересечения параболы y=ax^2+bx+c с осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы y=ax^2+bx+c с осью OY, нужно в уравнение параболы вместо х подставить ноль: y(0)=c.

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны  на рисунке:

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой y=ax^2+bx+c.

Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции y=2x^2+3x-5

1. Направление ветвей параболы.

Так как a=2>0 ,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена 2x^2+3x-5

D=b^2-4ac=9-4*2*(-5)=49>0  sqrt{D}=7

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение: 2x^2+3x-5=0

x_1={-3+7}/4=1,  x_1={-3-7}/4=-2,5

3.   Координаты  вершины параболы:

x_0=-{b/{2a}}=-3/4 =-0,75

y_0=-{D/{4a}}=-49/8=-6,125

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

y=2x^2+3x-5

Кррдинаты вершины параболы

x_0=-{b/{2a}}=-3/4 =-0,75

y_0=-{D/{4a}}=-49/8=-6,125

Ближайшие к вершине точки, расположенные  слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы  соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их  в таблицу:

Нанесем эти точки на координатную плоскость и соединим плавной линией:

2.  Уравнение квадратичной функции имеет вид y=a(x-x_0)^2+y_0 - в этом уравнении x_0;y_0 - координаты вершины параболы

или в уравнении квадратичной функции y=ax^2+bx+c a=1, и второй коэффициент - четное число.

Построим для примера график функции y=2(x-1)^2+4.

Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно

  • сначала построить график функции y=x^2,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Теперь рассмотрим построение  графика функции y=x^2+4x+5. В уравнении этой функции a=1, и второй коэффициент - четное число.

Выделим в уравнении функции полный квадрат: x^2+4x+5=x^2+4x+4-4+5=(x^2+4x+4)+1=(x+2)^2+1

Следовательно,  координаты вершины параболы: x_0=-2, y_0=1. Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

3.  Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции - точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда x_1=2; x_2=-1

2. Координаты вершины параболы: x_0={x_1+x_2}/2={2-1}/2=1/2

y_0=y(-1)=({1/2}-2)({1/2}+1)=-9/4=-2,25

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на  координатную плоскость и построим график:

 

График квадратичной функции.

Перед вами график квадратичной функции вида .

Кликните по чертежу.Подвигайте движки.Исследуйте зависимость- ширины графика функции от значения коэффициента ,- сдвига графика функции вдоль оси от значения  ,

- сдвига графика функции вдоль оси от значения  - направления ветвей параболы от знака коэффициента - координат вершины параболы от значений и :

Скачать таблицу квадратичная функция

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Функции

Автор: Sepehr Hassannejad

В каждой функции две переменных, таких как $x$ и $y$. Одна из них является независимой переменной - выбирается произвольно (в этой книге это $x$), тогда как другая является зависимой переменной. Когда меняется независимая переменная, то зависимая принимает значение согласно условиям функции.

Определение:Пусть $A$ и $B$ два множества, а $f$ - подмножество Декартова произведения $A \times B$. $f$ является функцией тогда и только тогда, если

$(x,y_1) \in f \,\,,\,\, (x,y_2) \in f \longrightarrow y_1=y_2$

Другими словами $f$ является подмножеством пар $A \times B$, так, что не существует двух различных пар с одинаковым первым компонентом. Пример:Пусть $A= \lbrace 1,3,7 \rbrace$ and $B=\lbrace -2,0 \rbrace$. Декартово произведение $A\times B$ равно

$A \times B = \lbrace (1,-2),(1,0),(3,-2),(3,0),(7,-2),(7,0) \rbrace$

Также пусть $f=\lbrace (1,0),(3,-2),(7,-2) \rbrace$.$f$ является подмножеством $A \times B$, а также является функцией, ведь не существует двух различных пар с одинаковым первым компонентом.

Пример:На картинке ниже $f$ функция $A$ от $B$.

Обратите внимание, что $f=\lbrace (1,11),(-2,\pi),(5,\pi) \rbrace$

Пример:На картинке ниже $g$ НЕ является функцией $A$ от $B$.

Обратите внимание, что $g=\lbrace (-1,\dfrac{1}{7}),(-1,\sqrt{2}),(0,\dfrac{1}{7}),(4,\sqrt{2}) \rbrace$

Пример:Является ли $R=\lbrace (\sqrt{2}-1,4),(\dfrac{1}{\sqrt{2}+1},5),(3,6),(\dfrac{1}{2-\sqrt{3}},1),(2+\sqrt{3},1)\rbrace$ функцией? Если нет, то найти подмножества $R$, которые являются функциями и каждое из которых состоит из трех пар. Решение:Прежде всего отметим, что

$\dfrac{1}{\sqrt{2}+1}=\dfrac{1}{\sqrt{2}+1} \times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$

$\dfrac{1}{2-\sqrt{3}}=\dfrac{1}{2-\sqrt{3}} \times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3}$

Значит $R$ можно переписать ввиде

$R=\lbrace(\sqrt{2}-1,4),(\sqrt{2}-1,5),(3,6),(2+\sqrt{3},1) \rbrace$

что не является функцией. Теперь подставим

$f_1=\lbrace (\sqrt{2}-1,4),(3,6),(2+\sqrt{3},1) \rbrace$

$f_2= \lbrace (\sqrt{2}-1,5),(3,6),(2+\sqrt{3},1) \rbrace$

Очевидно, что $f_1$ и $f_2$ - это два подмножества $R$, которые являются функциями.

Пример:Если $R=\lbrace (3,m-5),(-1,m),(2,m^2),(3,8) \rbrace$ яляется функцией, то каково значение $m$? Решение:

$(3,m-5)=(3,8) \rightarrow m-5=8 \rightarrow m=13$

Ясно, что

$R=\lbrace (3,8),(-1,13),(2,169) \rbrace$

Пример:Если $f=\lbrace(a^2-2a,3),(3,3),(-1,4),(a,3) \rbrace$ яляется функцией, то каково значение $a$? Решение:

$(a^2-2a,3)=(3,3) \rightarrow a^2-2a=3 \rightarrow a^2-2a-3=0 \rightarrow a=-1 \,\,,\,\, a=3$

Отметим, что если $a=-1$ , то $f=\lbrace(3,3),(-1,4),(-1,3) \rbrace$, что не является функцией. Следовательно, $a=-1$ не подходит. Значит $a=3$ и $f=\lbrace (3,3),(-1,4) \rbrace$ Пример:Доказать, что $f(x)=x^3-2$ является функцией. Решение:Согласно определению функции, нам нужно доказать, что если $x_1=x_2$, то $y_1=y_2$. Значит

$x_1=x_2 \rightarrow x_1 ^3=x_2 ^3 \rightarrow x_1 ^3 -2 =x_2 ^3 -2 \rightarrow y_1=y_2$

Следовательно, $f$ является функцией.

Пример:Доказать, что $x^2+y^2=4$ НЕ является функцией. Решение:

$x^2+y^2=4 \rightarrow y^2=4-x^2$

Теперь

$x_1=x_2 \rightarrow x_1 ^2= x_2 ^2 \rightarrow -x_1 ^2=-x_2 ^2 \rightarrow 4-x_1 ^2=4-x_2 ^2 \rightarrow y_1 ^2= y_2 ^2 \rightarrow y_1 = \pm y_2$

Таким образом не является функцией.

Совет:

$(x - \alpha)^2 + (y - \beta)^2 = R^2$

является стандартной формой уравнения окружности. Отметим, что $(\alpha,\beta)$ является центром окружности, а $R$ - ее радиусом.
Упражнения
1.На каком рисунке изображена функция? 2. Если $f=\lbrace (a,3),(1,-3),(2a+4,3) \rbrace$ является функцией, то каково значение $a$?

3. Если $f=\lbrace (a+b,2),(a^2-2,3),(a^2-2a,3),(3,2) \rbrace$ является функцией, то каково значение $a+b$?

www.math10.com

Обратная функция | Алгебра

Что такое обратная функция? Как найти функцию, обратную данной?

Определение.

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо:

1) В формулу функции вместо y подставить x, вместо x — y:

x=f(y).

2) Из полученного равенства выразить y через x:

y=g(x).

Пример.

Найти функцию, обратную функции y=2x-6.

1) x=2y-6

2) -2y=-x-6

y=0,5x+3.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая.  Для построения прямой берём две точки.

    \[\begin{array}{l} y = 2x - 6\\ \begin{array}{*{20}{c}} x&\vline& 0&\vline& 3\\ \hline y&\vline& { - 6}&\vline& 0 \end{array} \end{array}\]

    \[\begin{array}{l} y = 0,5x + 3\\ \begin{array}{*{20}{c}} x&\vline& 0&\vline& { - 6}\\ \hline y&\vline& 3&\vline& 0 \end{array} \end{array}\]

obratnaya-funkciyaОднозначно выразить y через x можно в том случае, когда уравнение  x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).

Теорема (необходимое и достаточное  условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.

Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции — также [0;∞).

1) x=y².

2)

    \[{y^2} = x, \Rightarrow y = \pm \sqrt x .\]

Так как y≥0, то

    \[y = \sqrt x ,\]

то есть на промежутке [0;∞) y=√x — функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:

vzaimno-obratnye-funkcii

В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции.

www.algebraclass.ru

Свойства функции

В этой статье мы коротко суммируем сведения, которые касаются такого важного математического понятия, как функция. Мы поговорим о том, что такое  числовая функция и какие свойства функции необходимо знать и уметь исследовать.

Что такое  числовая функция? Пусть у нас есть два числовых множества: Х и Y, и  между этими множествами есть определенная зависимость. То есть каждому элементу х из множества Х по определенному правилу ставится в соответствие  единственный элемент  y из множества Y.

Важно, что каждому элементу х из множества Х соответствует один и только один элемент y из множества Y.

Правило, с помощью которого каждому элементу из множества Х мы ставим в соответствие единственный элемент из множества Y, называется числовой функцией. 

Множество Х называется областью определения функции.

Множество Y называется множеством значений значений функции.

Равенство   называется уравнением функции. В этом уравнении    - независимая переменная, или аргумент функции.   - зависимая переменная.

Если мы возьмем все пары и поставим им в соответствие соответствующие точки координатной плоскости, то  получим график функции. График функции - это графической изображение зависимости между множествами Х и Y.

Свойства функции мы можем определить, глядя на график функции, и, наоборот, исследуя свойства функции мы можем построить ее график.

Основные свойства функций. 

1. Область определения функции.

Область определения функции D(y)-это множество всех допустимых значений аргумента x ( независимой переменной x), при которых выражение, стоящее в правой части уравнения функции   имеет смысл. Другими словами, это область допустимых значений выражения .

Чтобы по графику функции найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.

2. Множество значений функции.

Множество значений функции  Е(y)- это множество всех значений, которые может принимать  зависимая переменная y.

Чтобы по графику функции  найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.

3.  Нули функции.

Нули функции - это те значения аргумента х, при которых значение функции (y) равно нулю.

Чтобы найти нули функции , нужно решить уравнение  . Корни этого уравнения и будут нулями функции .

Чтобы найти нули функции по ее графику, нужно найти точки пересечения графика с осью ОХ. Абсциссы точек пересечения и будут нулями функции  .

4. Промежутки знакопостоянства функции. 

Промежутки знакопостоянства функции - это такие промежутки значений аргумента, на которых функция сохраняет свой знак, то есть  или .

Чтобы найти промежутки знакопостоянства функции , нужно решить неравенства и  .

Чтобы найти  промежутки знакопостоянства функции  по ее графику, нужно

  • найти промежутки значений аргумента х, при которых график функции расположен выше оси ОХ - при этих значениях аргумента
  • найти промежутки значений аргумента х, при которых график функции расположен ниже оси ОХ - при этих значениях аргумента  .

5. Промежутки монотонности функции.

Промежутки монотонности функции - это такие промежутки значений  аргумента х, при которых функция возрастает или убывает.

Говорят, что функция   возрастает на промежутке I, если для любых двух значений аргумента  , принадлежащих промежутку I таких, что   выполняется соотношение:.

Другими словами, функция   возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Чтобы по графику функции определить промежутки возрастания функции, нужно, двигаясь  слева направо по линии графика функции, выделить промежутки значений аргумента х, на которых график идет вверх.

Говорят, что функция   убывает на промежутке I, если для любых двух значений аргумента  , принадлежащих промежутку I таких, что   выполняется соотношение: .

Другими словами, функция   убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции. 

Чтобы по графику функции определить промежутки убывания функции, нужно, двигаясь  слева направо вдоль линии графика функции, выделить промежутки значений аргумента х, на которых график идет вниз.

6. Точки максимума и минимума функции.

Точка называется точкой максимума функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

.

Графически это означает что точка с абсциссой  x_0 лежит выше других точек из окрестности I графика функции y=f(x).

Точка называется точкой минимума  функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

Графически это означает что точка с абсциссой  лежит ниже других точек  из окрестности I графика функции .

Обычно мы находим точки максимума и минимума функции, проводя исследование функции с помощью производной.

 7. Четность (нечетность) функции.

Функция  называется четной, если выполняются два условия:

а) Для любого значения аргумента , принадлежащего области определения функции,   также принадлежит области определения функции.

Другими словами, область определения  четной функции симметрична относительно начала координат.

б)  Для любого значения аргумента х, принадлежащего области определения функции, выполняется соотношение .

Функция называется нечетной, если выполняются два условия:

а) Для любого значения аргумента , принадлежащего области определения функции, также принадлежит области определения функции.

Другими словами, область определения нечетной функции симметрична относительно начала координат.

б)  Для любого значения аргумента х, принадлежащего области определения функции, выполняется соотношение .

Все функции делятся на четные, нечетные, и те, которые не являются четными и не являются нечетными. Они называются функциями общего вида.

Чтобы определить четность функции, нужно:

а). Найти область определения функции , и определить, является ли она симметричным множеством.

Если, например,  число х=2 входит в область определения функции, а число х=-2 не входит, то D(y) не является симметричным множеством, и функция - функция общего вида.

Если область определения  функции - симметричное множество, то проверяем п. б)

б). В уравнение функции  нужно вместо х подставить -х, упростить полученное выражение, и постараться привести его к виду  или .

Если , то функция четная.

Если , то функция нечетная.

Если не удалось привести ни к тому ни к другому, то наша функция - общего вида.

График четной функции симметричен относительно оси ординат ( прямой OY ).

График нечетной функции симметричен относительно начала координат ( точки (0,0) ).

8. Периодичность функции.

Функция называется периодической, если существует такое положительное число Т, что

  • для любого значения х из области определения функции, х+Т также принадлежит D(x)

В программе средней школы из числа периодических функций изучают только тригонометрические функции.

Предлагаю вам посмотреть  ВИДЕОУРОК, в котором  я рассказываю, как определить свойства функции, график которой изображен на рисунке:

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Как решать графики функций

Решать графики - задача весьма интересная, но довольно трудная. Чтобы наиболее точно построить график, удобнее пользоваться следующим алгоритмом исследования функции.

Вам понадобится

  • Линейка, карандаш, ластик

Инструкция

  • Для начала обозначьте область определения функции - множество всех допустимых значений переменной.
  • Далее для облегчения построения графика установите, является ли функция четной, нечетной или индифферентной. График четной функции будет симметричен относительно оси ординат, нечетной функции - относительно начала координат. Поэтому для построения таких графиков достаточно будет изобразить их, например, в положительной полуплоскости, а оставшуюся часть отобразить симметрично.
  • На следующем шаге найдите асимптоты. Они бывают двух видов - вертикальные и наклонные. Вертикальные асимптоты ищите в точках разрыва функции и на концах области определения. Наклонные ищите, найдя угловой и свободный коэффициенты в формуле линейной зависимости.
  • Далее установите экстремумы функции - максимумы и минимумы. Для этого нужно найти производную функции, затем найти ее область определения и приравнять к нулю. В полученных изолированных точках определите наличие экстремума.
  • Определите поведение графика функции с точки зрения монотонности на каждом из полученных промежутков. Для этого достаточно посмотреть на знак производной. Если производная положительна, то функция возрастает, если отрицательна - убывает.
  • Для более точного исследования функции найдите точки перегиба и интервалы выпуклости функции. Для этого используйте вторую производную функции. Найдите ее область определения, приравняйте к нулю и определите наличие перегиба в полученных изолированных точках. Выпуклость графика определите, исследуя знак второй производной на каждом из полученных интервалов. Функция будет выпукла вверх, если вторая производная отрицательна, и выпукла вниз - если положительна.
  • Дальше найдите точки пересечения графика функции с осями координат и дополнительные точки. Они понадобятся для более точного построения графика.
  • Построение графика. Начать следует с изображения осей координат, обозначения области определения и изображения асимптот. Далее нанесите экстремумы и точки перегиба. Отметьте точки пересечения с осями координат и дополнительные точки. Затем плавной линией соедините отмеченные точки в соответствии с направлениями выпуклости и монотонностью.

completerepair.ru