Как решать задачи по математике 5 класс? 5 класс задачи решение


Как решать Задачи по Математике 5 класс (2017) + Примеры, Таблицы

Editor choice

СохранитьSavedRemoved 3

Существует много причин, по которым ребёнок не может решить задачу по математике 5 класс. В большинстве из них он не виноват, поэтому стоит ему помочь разобраться с проблемой. Задачи не такие трудные, но в связи с появлением дробей и уравнений иногда сложно определить способ и верный путь их решения.

Почему инструкция лучше решебника?

В этой инструкции вы сможете найти типовые задачи, которые встречаются в курсах математики за 5 класс и разобранное, подробное, пошаговое решение. Это значительно полезнее книг, так как в них собраны далеко не все задачи, а те решения, которые есть, сжаты до минимума. Поэтому пользоваться решебником — порой не самый лучший выход.

Решебник по математике не всегда может дать исчерпывающую информацию

Как правило, при составлении ответов на свои задачи авторы не расписывают подробности и дают решения не ко всем номерам. Возможно, в расчёт идёт тот факт, что ученик способен справиться самостоятельно. Но вдруг ребёнок пропустил тему, что же тогда делать?

Лучший вариант — посмотреть решение типовых задач с пояснениями каждого действия. В этой инструкции собраны самые распространённые примеры, которые вызывают трудности у детей при решении, а также родителей при попытке объяснить задачу.

вернуться к меню ↑

Почему важно уметь решать задачи по математике?

Математика — точная дисциплина, связанная с вычислениями. Но её часто называют царицей всех наук. Это не просто так. Основное, чему учатся дети — решение конкретно поставленных задач. Это самое важное для развития любого человека.

Для построения правильного ответа на задачу нужно выделить:

  • главную мысль;
  • заданное условие;
  • что требуется найти;
  • связь между искомым и данным.

Математика — один из самых важных предметов в школьной программе

На основе этого строится логичное решение с использованием условий для получения требуемого результата. Вместе с этим развивается познавательная активность, логические мышление.

вернуться к меню ↑

Какие бывают задачи по математике в 5-ом классе?

В 5-ом классе по математике встречается несколько разновидностей задач. Этот год самый важный для ученика, потому что здесь собраны все базовые условия, которые углублённо решаются в следующие годы обучения. Здесь представлен список самых распространённых задач:

  • на базовые арифметические действия;
  • на скорость, время и расстояние;
  • на движение;
  • решаемые алгебраическим способом — проценты, дроби, уравнения;
  • решаемые геометрическим способом — площадь, длина.

Существует немало различных задач и путей их решения

Для грамотного решения всех типов задач можно составить единый алгоритм:

  • Прочитайте вдумчиво, не торопясь полный текст задачи;
  • Определите к какому типу она относится;
  • На основе этого составьте краткое условие или таблицу;
  • Начните читать каждое предложение отдельно, заполняя таблицу или краткое условие;
  • Определите вопросом то, что нужно найти;
  • Выберите вариант решения и составьте выражение, в результате которого получится ответ;
  • Проверьте правильность и соответствие условию;
  • Запишите полученный ответ.

Этот алгоритм можно применять ко всем типам задач. В разных заданиях отличаться будут только числа и способ решения.

Далее представлены все типы задач, которые могут встретить пятиклассники в учебниках и задачниках по математике. Все они будут разобраны на двух примерах с подробным разъяснением.

вернуться к меню ↑

Задачи на сложение, вычитание, умножение и деление

вернуться к меню ↑

Пример 1

На кухне лежит пакет, в котором 3000 грамм муки. Повар для выпечки из него брал 4 раза муку. В первый раз 250 грамм, во второй 320 грамм, в третий 140 грамм, в четвёртый 690 грамм. Найдите сколько муки осталось в пакете.

Решение

  • Для начала запишем краткое условие в виде таблицы. Повар брал муку четыре раза, значит для каждого раза делаем по одной строчке.
  • Всего у нас было 3000 грамм. Это ещё одна строка.
  • От нас требуют найти остаток, значит — это последняя строка.
  • Заполняем таблицу. Какой она получится, смотрите ниже.

Таблица 1 — Краткое условие

Условие Количество
Было 3000
Первый раз 250
Второй раз 320
Третий раз 140
Четвёртый раз 690
Осталось ?
  • Сделанная таблица наглядно показывает, что для расчёта остатка нужно из 3000 вычесть количество, которое повар забрал всего;
  • Для этого сложим количество муки, которое повар израсходовал за четыре раза. Получается такое выражение: 250+320+140+690=1400 грамм;
  • Теперь найдём остаток. Для этого из того, что было, вычтем полученное значение — 1400. Получим выражение: 3000-1400=1600 грамм. Это то, что от нас требовалось — найти сколько осталось муки;
  • Записываем это в ответ к задаче.
вернуться к меню ↑

Пример 2

В пассажирском поезде 12 вагонов. В каждом из них по 40 мест. Сколько осталось свободных мест, при условии, что в поездку отправились 352 пассажира?

Решение

  • Составляем краткое условие. Нагляднее всего будет снова использовать таблицу;
  • У нас есть количество вагонов — первая строчка. Количество свободных мест в каждом вагоне — вторая строка. Места, которые заняли пассажиры — третья. Сколько осталось мест — четвёртая;
  • Далее заполняем таблицу числами из условия. Что получилось, смотрите ниже;

Таблица 2 — Условие задачи

Места в вагоне Количество
Кол-во вагонов 12
Кол-во мест в вагоне 40
Кол-во пассажиров 352
Осталось мест ?
  • Теперь приступаем к вычислениям. Для начала нам нужно узнать сколько всего свободных мест было в вагонах. Для этого умножим количество вагоном на количество свободных мест в каждом. Получается выражение: 40×12=480;
  • Для того, чтобы найти сколько осталось свободных мест нужно, из полученного значения вычесть занятые места. Получим выражение: 480-352=128;
  • Полученное число — это ответ на вопрос из условия задачи. Записываем его.

Эти задачи самые простые и встречаются в начале учебного года. Используют их авторы учебников для того, чтобы ученик мог вспомнить алгоритм решения и базовые правила.

вернуться к меню ↑

Задачи на скорость, время, расстояние

вернуться к меню ↑

Пример 1

За 7 часов теплоход проделал путь в 210 км. Поезд за 4 часа преодолел 420 км. Во сколько раз скорость поезда больше скорости теплохода?

Решение

  • Записываем краткое условие. В этом типе задач оно немного отличается от стандартного;
  • У нас есть два объекта — теплоход и поезд. Это значит, что в таблице будет две строки;
  • Для каждого объекта есть три значения, соответственно, и столбцов будет три;
  • Заполняем числами таблицу. Что должно получится смотрите ниже;

Таблица 3 — Краткое условие

Скорость Время Расстояние
Теплоход ? 7 210
Поезд ? 3 360
  • Приступим к поиску неизвестных. Нам нужно узнать скорость у теплохода и поезда. Для этого используется формула — скорость равна результату деления расстояния на время. Математически записывается так — V=S:T;
  • Подставив числа из условия, получаем выражение для скорости теплохода. 210:7=30 км/ч;
  • Также поступаем и для расчёта скорости поезда. 360:3=120 км/ч;
  • Мы нашли все неизвестные и теперь возвращаемся к главному вопросу задачи. Нам нужно определить во сколько раз скорость поезда превышает скорость теплохода;
  • Для этого делим большее значение на меньшее. Получается: 120:30=4;
  • В ответ пишем, что скорость теплохода и поезда отличается в 4 раза.
вернуться к меню ↑

Пример 2

Автомобилист за 4 часа проехал 320 километров. Какой путь проделает автомобиль за 8 часов с той же скоростью?

Решение

  • Записываем краткое условие. Объект один, значит строка будет одна. Столбцов стандартно три;
  • Заполняем числа из условия в таблицу. Что получится смотрите ниже;

Таблица 4 — краткое условие

Скорость Время Расстояние
Автомобиль ? 4 320
  • Ищем неизвестные. В нашем случае нужно найти скорость. Для этого воспользуемся формулой V=S:T. Подставляем числа и получаем: 320:4=80 км/ч;
  • После того, как стали известны все значения, переходим к главному вопросу задачи — сколько проедет автобус за 8 часов с той же скоростью;
  • Для расчёта используем формулу S=VT. Подставляем числа и получаем: 80×8=640 км;
  • Записываем полученное значение в ответ к задаче.

Решение этих задач требует знать основную формулу S=VT. Расшифровывается она так: расстояние равно произведению скорости на время. Из неё вытекают все решения для нахождения неизвестных. Также для упрощения задачи можно рисовать схему.

вернуться к меню ↑

Задачи на движение

вернуться к меню ↑

Пример 1

Расстояние между двумя городами 125 километров. В одно и то же время выезжают два велосипедиста навстречу. Скорость первого велосипедиста 10 км/ч. Второй едет со скоростью 15 км/ч. Через какое время они встретятся?

Решение

  • Начинаем с составления краткого условия. Лучше всего оформить в качестве таблицы;
  • Велосипедиста два— значит нужны 2 строки. Столбцов стандартно 3. Но в этом типе задач у нас будут общие показатели. То есть, расстояние и время всегда одно сразу для всех строк;
  • Заполняем таблицу числами. Что должно получится смотрите в ниже;

Таблица 5 — краткое условие

Скорость Время Расстояние
1 велосипедист 10 ? 125
2 велосипедист 15 ? 125
  • Теперь переходим к расчётам. Логично, что для встречи велосипедисты должны проехать в сумме весь путь. Необязательно одинаковое расстояние, так как оно зависит от скорости каждого из них;
  • Нам нужно посчитать какое расстояние они преодолевают в час. Для этого сложим скорости первого и второго. Получаем выражение: 10+15=25 км/ч;
  • Для расчёта времени через которое они встретятся нужно воспользоваться формулой T=S:V. Подставляем числа и получаем выражение: 125:25=5 ч;
  • Соответственно, велосипедисты пересекутся между собой через 5 часов. Записываем это в ответ.
вернуться к меню ↑

Пример 2

Расстояние, на котором между собой находятся два города — 600 км. Из них одновременно на встречу друг другу выехали два автомобиля. В пути они встретились через 5 часов. Найдите скорость первого автомобиля, если известно, что второй ехал со скоростью 80 км/ч.

Решение

  • Составим таблицу, в которой ситуация из условия будет наглядно представлена;
  • Два автомобиля — две строки. Стандартное количество столбцов — три;
  • Заполняем числами из условия. Что должно получится, смотрите ниже;

Таблица 6 — краткое условие

Скорость Время Расстояние
1 автомобиль ? 5 600
2 автомобиль 80 5 600
  • Переходим к расчётам. Для нахождения скорости первого автомобиля нам нужно знать, сколько километров он проехал. Найти это можно, вычтя из общего пути расстояние, которое проехал второй до их встречи;
  • Используем формулу S=VT. Подставляем числа из таблицы, получаем выражение: 80×5=400 км. Это расстояние прошёл второй автомобиль до встречи с первым. Значит, первый проехал всего: 600-400=200 км;
  • Теперь можно найти скорость первого автомобиля. Используем формулу V=S:T. Подставляем числа: 200:5=40 км/ч;
  • Полученное значение — ответ на главный вопрос задачи. Записываем его.

Если вас смущает время, которое написано один раз для всех объектов, то можно поступить следующим образом. Записывайте его отдельно к каждой строке и рядом нарисуйте отрезок, который снизу отмечен расстоянием, а сверху подписан временем.

вернуться к меню ↑

Задачи, решаемые алгебраическим способом

вернуться к меню ↑

Пример 1

Из цистерны отлили 80 литров молока, в нем осталось на 240 литров больше, чем отлили. Сколько литров молока было в цистерне с самого начала?

Решение

  • Начинаем с составления краткого условия в виде таблицы. В подобных типовых задачах нужно обозначать неизвестное за «x»;
  • Потребуются три строки: сколько молока было, сколько его отлили и сколько осталось;
  • Заполняем числами таблицу;

Таблица 7 — краткое условие задачи

Было Х
Отлили 80
Осталось 240+80
  • Приступаем к расчётам. Нам нужно узнать, сколько было молока изначально. Для этого составляем уравнение. От начального количества вычитаем отлитое и получаем остаток;
  • Математически получаем такую запись: x-80=240+80;
  • Начинаем решение с того, что считаем всё, что можно посчитать. В данном случае складываем правую часть уравнения. 240+80=320. Теперь уравнение имеет вид: x-80=320;
  • Теперь находим «x». Используем базовое правило математики и получаем следующее: x=320+80. Считаем правую часть и получаем: x=400;
  • Возвращаемся к началу и смотрим, что мы обозначили за «x». В этом примере за икс мы взяли объём молока, который был изначально. То есть, изначально было 400 литров молока;
  • Записываем полученное значение в ответ.
вернуться к меню ↑

Пример 2

Первое слагаемое на 52 больше второго слагаемого, а второе слагаемое на 14 меньше третьего слагаемого. Сумма трех слагаемых равна 327. Найдите каждое слагаемое.

Решение
  • Записываем краткое условие в виде таблицы;
  • Потребуется четыре строки, так как нам дали три слагаемых и их сумму;
  • Заполняем таблицу числами, обозначив за икс последнее слагаемое. Выбираем третье, потому что от него зависят все остальные;
Таблица 8 — краткое условие задачи 1 слагаемое (x-14)+52
2 слагаемое x-14
3 слагаемое x
Сумма 327
  • Приступаем к расчётам. Для нахождения слагаемых нужно решить уравнение, после чего число подставить в выражения из таблицы.
  • Уравнение составляется исходя из условия – три слагаемых и сумма – складываем значения из второго столбца таблицы и приравниваем это к сумме.
  • Получится такое выражение: (x-14)+52+(x-14)+x=327.
  • Открываем скобки и упрощаем выражение: 3x+24=327.
  • Переносим числа в правую часть: 3x=303
  • Считаем икс: 303:3=101.
  • Теперь подставляем число 101 в таблицу вместо икса.
  • Получается третье слагаемое равно 101; второе: 101-14=87; первое: 87+52=139.
  • Эти числа записываем в ответ. Легко проверить правильность решения просто сложив эти значения. Если пример получается правильный, то и решено всё верно.

Для правильного решения этих типовых задач необходимо ничего не напутать с иксом. Лучше потратить больше времени и сразу всё проверить, чем переделывать задание сначала. Неправильное обозначение повлечёт за собой ошибку на протяжении всего решения

вернуться к меню ↑

Задачи, решаемые геометрическим способом

вернуться к меню ↑

Пример 1

В доме 4 двери. Ширина каждой 1 метр, высота — 2 метра. Сколько нужно белил, чтобы покрасить их с обеих сторон, при условии, что на 1 квадратный метр поверхности требуется 100 грамм белил? Ответ дайте в граммах.

Решение

  • Для решения нужно вычислить площадь каждой двери, которую нужно покрасить. Для этого используем формулу площади прямоугольника – S=ab, где a и b – длины сторон. Подставляем числа из условия и получаем: S=2×1=2 м2;
  • Далее умножаем площадь на 2, потому что каждую дверь нужно окрасить с двух сторон. Получаем 2×2=4 м2. То есть, покрасочная площадь каждой двери равна 4 квадратным метрам;
  • Посчитаем общую площадь для всех дверей. Для этого умножаем площадь одной на их количество: 4×4=16 м2;
  • Главный вопрос задачи — сколько потребуется белил для всех дверей? Чтобы посчитать умножаем количество, требующееся на 1 квадратный метр на всю площадь: 100×16=1600 грамм;
  • Записываем это значение в ответ.

вернуться к меню ↑

Пример 2

Площадь прямоугольника 192 квадратных сантиметра, длина одной из сторон — 16 см. Найдите периметр прямоугольника.

Решение

  • Для начала нужно посчитать другую сторону прямоугольника. Делается это с помощью формулы площади: S=ab, где a и b — длины сторон. Подставляем числа и получаем: 192=16*a. Отсюда получается, что вторая сторона — 12 см;
  • Для нахождения периметра воспользуемся формулой P=2(a+b). Подставляем числа и получаем: P=2(16+12)=2×28=56 см;
  • Найденное значение записываем в ответ.

Для решения геометрических задач нужно знать наизусть все формулы площадей и периметров. Без этого не получится даже приступить к решению задания.

вернуться к меню ↑

Нужен ли ребёнку репетитор по математике в пятом классе?

После перехода в средний этап школы у ребёнка может упасть успеваемость по некоторым предметам, в том числе и по математике. Более того математика — самый проблематичный предмет для детей. Некоторые родители сразу бьют тревогу и ищут репетиторов, чтобы исправить эту ситуацию.

На самом деле, не стоит делать поспешных выводов. Для начала нужно определить причину падения успеваемости. Возможно, некоторые из новых учителей просто халатно относятся к преподнесению нового учебного материала. Другие преподаватели не могут найти особый подход к ребёнку в связи с ограничением по времени.

У многих детей в школе возникают сложности с изучением математики

Это не значит, что ваш ребёнок неспособный к определённым дисциплинам. Попробуйте объяснить ему материал самостоятельно, ведь именно вы знаете своё чадо лучше других. Если и это не помогло, то обращайтесь к помощи репетитора.

Главная задача специалиста — найти персональный подход к каждому ученику. Они смогут максимально эффективно и просто объяснить ребёнку тему в зависимости от особенностей его восприятия и склада ума.

Перед обращением убедитесь, что ухудшение оценок произошло только по нескольким взаимосвязанным предметам, а не в целом. Если успеваемость сильно упала в общем плане, то скорее всего ребёнок ленится. Связано это может быть со скукой на уроках и утратой интереса к учёбе. В таком случае, поговорите с ним, объясните, что это очень важно и пригодится в жизни, приводя аргументы и наглядные примеры.

Конечно, если это связано, например, с пропуском занятий по причине болезни, или в школе неправильно преподносится материал, то стоит задуматься о найме репетитора. Он поможет в кратчайшие сроки улучшить результаты ребёнка.

вернуться к меню ↑

Как решить проблемы с математикой

Как только у ребёнка появляются проблемы с математикой родители почему-то начинают думать, что причина заключается в плохой предрасположенности к точным наукам. Потому что формулы вроде бы знает, простые примеры решить тоже может, но каждая контрольная и самостоятельная работа превращается в целое испытание для всей семьи. Все сидят в ожидании результатов. Никогда нельзя сказать точно какую оценку получит ребёнок — четвёрку или двойку.

Дети часто получают плохие отметки именно по математике

Также много жалоб по типу: занимаемся все выходные напролёт, учим эту математику, учим, а в итоге всё равно результат прежний. На самом деле, причина такого плохого восприятия — отсутствие адекватных причин заниматься всеми этими цифрами. Большинство родителей сходятся во мнении, что ребёнок просто гуманитарий, главное — литература, история, обществознание, а математика неважна.

вернуться к меню ↑

Гуманитариям математика не нужна?

Это огромная ошибка, ведь для лучшего восприятия точных наук этому самому «гуманитарию» нужно лишь вдохновение и цель. Отлично будет, если ребёнку объяснить, что математика — это такая же наука, как и любая другая, и она не ограничивается уравнениями и задачами. Это нечто большее. Математика позволяет изменить мышление, воспринимать старые вещи по-новому.

Главная проблема всех гуманитариев, которые имели проблемы с математикой — это логика. Для составления, например, грамотной и структурированной статьи нужно руководствоваться не только правилами русского языка, но и логикой изложения мысли. Все части должны быть связаны между собой, в то же время, должны легко читаться отдельные фрагменты.

Именно логическое мышление в первую очередь развивает математика и воспринимать это нужно, как возможность расширения кругозора и свежего взгляда на старое. Также точные науки помогают дисциплинировать свой ум и комплексно подходить к решению поставленных задач.

вернуться к меню ↑

Математика — сложный предмет

Самая популярная отговорка заключается в том, что математика — самый сложный предмет из всех. Нет, на самом деле это одна из самых простых и понятных дисциплин. Для сравнения, возьмите наш богатый русский язык.

Мало того, что в нём существует немало правил орфографии, пунктуации, стилистики, так ещё и исключения есть почти в каждом правиле. Вот уж где нужно запоминать «тонну» информации.

В то же время в математике существуют базовые правила, на которых строятся все остальные. То есть, более сложное всегда можно привести к простому. Всё построено на железной логике, и, следуя этим правилам, вы сможете решить задачи, которые казались на первый взгляд непосильными.

Вспомните, как учат всех детей. Для того, чтобы научить их писать, сначала нужно выводить палочки, точки, изгибы. Потом уже буквы, а из букв — простые слова, из слов — предложения.

Начните изучать математику с самых простых уравнений

В математике с самого начала всё объясняется на пальцах или предметах. При этом, за то же самое время, потраченное на русский язык и на математику, прогресс в изучении второй будет больше. Например, считать учатся дети на яблоках, конфетках.

Используйте это и для решения более сложных задач. В пятом классе аналогии привести не составит труда. Это поможет ребёнку ассоциировать вычисления не с сухими числами, а, например, с мандаринами.

вернуться к меню ↑

Формула спокойствия

Часто плохие оценки становятся причиной ссор между родителями и детьми. Это категорически неправильно. Вместо того, чтобы высказывать ребёнку, что он «ленится», «не думает о будущем» да и в общем «туго соображает», следует отвести от неудачи или помочь исправиться с ней.

Но под помощью подразумевается не «вдалбливание» и «зубрёжка» неинтересных формул и правил. Следует возбудить интерес к теме, которая была плохо воспринята. Да и к тому же поставить правильную цель ребёнку. Не нужно говорить, что от оценок зависит его будущее. Вообще не зацикливайте внимание на оценках.

По исследованиям российских психологов дети, которые хотели стать врачами, инженерами и просто хорошими людьми, быстро повышали свою успеваемость. А те ученики, которым с первого класса «вдалбливают» в голову знания, думали только о том, как не стать худшим в классе, и уделяли своим отметкам слишком большое внимание.

Лучшим вариантом по-прежнему остаются занятия с репетитором. Он сохранит нервы, и вам, и ребёнку. Обеспечивая нужное количество времени на обучение и выбрав правильный подход, ученик станет показывать результаты лучше прежнего. Но, моментально отличником вашего ребёнка это не сделает.

Надеемся, что вы смогли найти решение задач, которое искали. Также для понимания темы рекомендуем посмотреть видео по этой теме от организаторов специальной математической школы федерального уровня «Аристотель».

8.5 Общий Балл

Некоторые ученики, как пятых, так и других классов, часто сталкиваются с проблемами в изучении математики. В этом случае родителям не стоит впадать в панику. Следует уделить больше внимания детальному разбору примеров и задач. Если это не улучшит успеваемость, есть смысл обратиться за помощью к репетитору.

Плюсы

  • Подробные инструкции помогут разобраться в решении задач и примеров
  • Для изучения математики можно пользоваться решебниками

Минусы

  • Полученных знаний в школе не всегда достаточно для понимания предмета
Добавить свой отзыв

slovami.net

Задачи по математике для 5-го класса

Площадь одного квадрата 47,6, а площадь другого — на 5,9 больше площади первого. Найдите сумму площадей двух квадратов.

  • А102,1 $${см}^{2}$$
  • Б101$${см}^{2}$$
  • В100,1$${см}^{2}$$
  • Г101,1$${см}^{2}$$
Показать правильный ответ #3878

testonik.net

Математика, 5 класс, Виленкин и др., задачи, решения

Виленкин и др., Математика, 5 класс. Задача №10, решение Просмотров: 15140
Виленкин и др., Математика, 5 класс. Задача №1011, решение Просмотров: 9700
Виленкин и др., Математика, 5 класс. Задача №1013, решение Просмотров: 7568
Виленкин и др., Математика, 5 класс. Задача №1014, решение Просмотров: 6595
Виленкин и др., Математика, 5 класс. Задача №1017, решение Просмотров: 6461
Виленкин и др., Математика, 5 класс. Задача №1018, решение Просмотров: 5725
Виленкин и др., Математика, 5 класс. Задача №1019, решение Просмотров: 8393
Виленкин и др., Математика, 5 класс. Задача №1020, решение Просмотров: 5673
Виленкин и др., Математика, 5 класс. Задача №1021, решение Просмотров: 5455
Виленкин и др., Математика, 5 класс. Задача №1022, решение Просмотров: 5201
Виленкин и др., Математика, 5 класс. Задача №1028, решение Просмотров: 5173
Виленкин и др., Математика, 5 класс. Задача №1029, решение Просмотров: 5394
Виленкин и др., Математика, 5 класс. Задача №1030, решение Просмотров: 5307
Виленкин и др., Математика, 5 класс. Задача №1031, решение Просмотров: 5010
Виленкин и др., Математика, 5 класс. Задача №1040, решение Просмотров: 5717
Виленкин и др., Математика, 5 класс. Задача №1043, решение Просмотров: 5408
Виленкин и др., Математика, 5 класс. Задача №1044, решение Просмотров: 5668
Виленкин и др., Математика, 5 класс. Задача №1046, решение Просмотров: 5748
Виленкин и др., Математика, 5 класс. Задача №1051, решение Просмотров: 5960
Виленкин и др., Математика, 5 класс. Задача №1052, решение Просмотров: 6495

oftob.ru

Логические задачи Математика 5 класс

Математический тренажер 5 класс

Математический тренажер 5 класс Сайт "Все Для Детей" http:// Математический тренажер. 5 класс Основная функция устных упражнений актуализация опорных для конкретной темы знаний и умений, подготовка учащихся

Подробнее

Ребусы по русскому языку 6 класс

Библиотека сайта "Все Для Детей" Ребусы по русскому языку 6 класс http:// Ребусы по русскому языку. 6 класс Ребусы прекрасный игровой метод для активизации детей на уроке. Ребусы любят все и сами школьники,

Подробнее

Кроссворды по русскому языку 5 класс

Библиотека сайта "Все Для Детей" Кроссворды по русскому языку 5 класс http:// Кроссворды по русскому языку. 5 класс Кроссворд на уроке самый насыщенный метод опроса и даже проверки знаний. По активности

Подробнее

0:1 Винни-Пух обходит полянку квадратной формы за 12 минут. За сколько минут обойдет он полянку, периметр которой в три раза больше? 0:3 У Кати вдвое больше пятерок, чем у Вовы, а у него на 5 пятерок меньше,

Подробнее

0:1 Винни-Пух обходит полянку квадратной формы за 12 минут. За сколько минут обойдет он полянку, периметр которой в три раза больше? 0:3 У Кати вдвое больше пятерок, чем у Вовы, а у него на 5 пятерок меньше,

Подробнее

М А Т Е М А Т И К А В Ш К О Л Е

Тесты по математике по учебнику М. И. Моро для 1 класса. 1 и 2 четверти Тесты по математике для 1 класса, 1 четверть Тест 1 Вариант I 1. На рисунке изображены круги и квадраты. Закрась синим цветом фигуры,

Подробнее

426 + ( ) ( ) ( ) ( ) ( ) 4589 ( ) 1 6 (I) Вычисли:

м (4 класс) Дорогой друг! Стартовая работа помогла тебе выявить трудности, а карточки, размещѐнные здесь, помогут тебе с этими трудностями справиться. Старайся, и у тебя всѐ получится! Карточку надо аккуратно

Подробнее

УВАЖАЕМЫЕ ПЕДАГОГИ И РОДИТЕЛИ!

УВАЖАЕМЫЕ ПЕДАГОГИ И РОДИТЕЛИ! Федеральный государственный образовательный стандарт второго поколения рекомендует по-новому оценивать не только знания, умения, но и компетентности обучающихся в начальной

Подробнее

Пояснительная записка

Пояснительная записка Все задания предполагают творческое применение программных знаний, умений и навыков по данным предметам. Материалы данной работы могут быть использованы учителем при подготовке к

Подробнее

«Думай, считай, отгадывай!»

«Думай, считай, отгадывай!» Цели игры: - создать условия для развития математического мышления, быстроты реакции; - содействовать формированию интереса к математике; - обобщать ранее изученный материал.

Подробнее

М А Т Е М А Т И К А В Ш К О Л Е

Контрольные работы по математике по учебнику Петерсон. 1 класс Контрольная работа 1, уроки 1-18, на темы: "Сложение и вычитание", "Свойства предметов: больше, меньше", "Группа предметов: сложение, вычитание",

Подробнее

М А Т Е М А Т И К А В Ш К О Л Е

Задачи и примеры для самостоятельной работы по математике 1 класс, 1 четверть по учебнику Петерсон Задачи и примеры для самостоятельной работы 1 на темы: "Свойства и сравнения предметов" Вариант I 1. Продолжи

Подробнее

Внимание. Ответ: Ответ:

Задание 1. «Отыщи поросят» Внимание. Внимательно посмотрите на картинку. Отыщите всех поросят на полянке. Каждого поросёнка, которого найдёте, зачеркните карандашом. (вписать цифрой число зачёркнутых поросят)

Подробнее

МАТЕМАТИКА 4 КЛАСС ЯНВАРЬ

1 В 3 носка. Вытащив из ящика 2 носка, можно вытащить 1 синий носок и 1 чёрный носок. Третий носок будет или синий, или чёрный, и в руках Васи обязательно окажется пара носков одинакового цвета. 2 Г 15

Подробнее

Тест готовности ребенка к школе :00

Первый класс! Для всех родителей это очень важное и запоминающееся событие, поскольку ваш кроха, который ещё вчера практически ничего не умел делать без вашей помощи, сегодня уже достаточно самостоятельная

Подробнее

Занятие 1 Задачи на смекалку

Занятие 1 Задачи на смекалку В этом занятии не требуется никаких навыков, знаний или умений производить сложные вычисления. Понадобится лишь смекалка и воображение ребенка. В данном разделе собраны фольклорные

Подробнее

ЗАНЯТИЕ 3 ОН МОЙ ОНА МОЯ ОНО МОЁ

ЗАНЯТИЕ 3 ОН МОЙ ОНА МОЯ ОНО МОЁ 1. Подпиши картинки. Вставь слова МОЙ, МОЯ ИЛИ МОЁ. СОБАКА ЯБЛОКО СТУЛ _Она моя КРЕСЛО ПЛАТЬЕ ТИГР ДОМ МЯЧ КНИГА КОШКА КОНФЕТА ВАРЕНЬЕ 8 2. Соедини слова с картинкой. Соедини

Подробнее

Русский язык, 1 класс, декабрь 2016

Русский язык, 1 класс, декабрь 2016 1 КЛСС ЕКРЬ 2016 Маленькая Майя хочет, чтобы ей почитали. Она просит старшую сестру: «Почитай мне книжку, где доктор лечит всех зверей! И ещё про крокодила, который

Подробнее

Решения для 4 5 класса

1 1. Первая часть Задача 1: Решения для 4 5 класса Сколькими способами можно поставить двух королей одного цвета на доске 3х3 так, чтобы они не били друг друга? А. 4 Б. 8 В. 12 Г. 16 В центре доски король

Подробнее

Математическое домино. Задания

Математическое домино Правила математической игры «Математическое домино» 1. Представитель каждой команды выбирает доминошку. На обороте каждой доминошки написана задача. На каждую задачу отводится два

Подробнее

Умножение числа на 10.»

Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа 2 Урок математики в 3 классе «Сочетательное свойство умножения. Умножение числа на 10.» Учитель: Гурьянова Е.С. г. Навашино

Подробнее

Гдз по геометрии 5 класс шарыгин

Гдз по геометрии 5 класс шарыгин >>> Гдз по геометрии 5 класс шарыгин Гдз по геометрии 5 класс шарыгин Куб и его свойства 6. Много полезного найдут в нем и школьники для самостоятельных занятий. Здесь

Подробнее

М А Т Е М А Т И К А В Ш К О Л Е

Карточки по математике для 1 класса, 3 и 4 четверти Карточки по математике для 1 класса, 3 четверть Тема: "Сложение чисел от 0 до 10" 5 + 1 = 4 + 3 = 3 + 6 = 1 + 7 = 4 + 2 = 2 + 2 = 3 + 5 = 2 + 7 = 3 +

Подробнее

Межшкольная олимпиада. 4 класс

Межшкольная олимпиада 30.01.16 4 класс 1. Соедините пять звеньев цепи в одну цепь при помощи только шести операций (операции состоят из расковывания и заковывания колец) 2. Скорый поезд вышел из Москвы

Подробнее

docplayer.ru

Математика 5 класс. Сложные задачи на дроби. Дидактика репетитора

Предлагаю репетиторам по математике специально подготовленный комплект базовых сложных задач на дроби, рассчитанный для учащихся 5 класса. Ориентировочное время на его проработку на уроке — 60 минут. Регулярно использую данный комплект в ситуациях, когда родителям нужна олимпиадная помощь репетитора по математике (подготовка в Курчатовскую школу, в лицей «Вторая школа» и др.) Большинство задач составлены мной по мотивам известных классических номеров повышенной сложности. Комплект можно также использовать в работе с сильным учеником 4 класса, параллельно осваивающим с репетитором по математике программу учебника Петерсона.

Для подготовки к олимпиадам по математике в 5 классе. Задачи на дроби.

1) Тетя Нюра пожарила блинчики. Ира съела половину приготовленных блинчиков и еще один блинчик. Максим съел половину остатка и еще один блинчик, а Никита съел половину последнего остатка и последний блинчик. Сколько блинчиков пожарила тетя Нюра?

2) Мама испекла пирожки. Маша съела всех испеченных пирожков и еще один. После этого Антон съел всех оставшихся пирожков и еще один. И, наконец, Вера съела последнего остатка и последний пирожок. Сколько пирожков испекла мама?

3) Папа пошел в магазин. На первую покупку он истратил всех своих денег и еще одну монету. На вторую покупку он истратил остатка и еще одну монету. На последнюю покупку он снова истратил остатка и последнюю монету. Сколько монет было у папы?

4) Андрей прочитал книгу за 2 дня. Во второй день он прочел того, что он прочитал в первый день. Сколько страниц он прочитал во второй день, если во всей книге 80 страниц?

5) Турист проехал намеченный путь за 2 дня. В первый день он проехал того, что проехал во второй. Сколько километров он проехал во второй день, если весь путь составил 140км?

6) Столб врыт в землю. Часть столба, находящаяся в земле, составляет той части, которая находится над землей. Найдите глубину, на которую врыт столб, если его длина составляет 3м40см.

7) Полина прочитала книги, а Софья — такой же книги. Сколько страниц в этой книге, если Полина прочла больше Софьи на 63 страницы?

8) В первый день в магазине продали всей завезенной вишни, а во второй — всей завезенной вишни. Сколько килограммов вишни завезли, если во второй день продали на 90 кг больше, чем в первый?

9) Имеются две одинаковые бочки с водой. Из первой вылили бочки, а из второй — бочки. Сколько литров воды было в каждой бочке, если из второй бочки вылили на 220литров воды больше, чем из первой.

10) Количество отсутствующих учеников в классе составляет числа присутствующих. Когда из этого класса вышло 6 учеников, число отсутствующих составило числа присутствующих. Сколько всего учеников в этом классе?

11) Преподаватель по математике проверял тетради с итоговой контрольной работой за 6 класс. До обеда число проверенных работ составляло числа не проверенных. После обеда он проверил еще 4 работы, и число проверенных составило от числа не проверенных. Сколько всего имелось работ?

12) В коробке лежат красные и белые шары. Количество красных шаров составляет числа белых. После того как 12 белых шаров покрасили в красный цвет, количество красных составило числа белых. Сколько шаров в коробке?

13) После того как почтальон проехал 1 км и еще половину оставшегося пути до почты, ему осталось проехать всего пути и еще 1 км. Чему равен путь почтальона?

14) После того как черепаха проползла 10 см и еще оставшегося пути, ей осталось проползти всей дистанции и последние 10 см. Чему равна длина дистанции черепахи?

15) После того как туристы проехали 2 км на машине и еще остатка всего маршрута, им осталось до конца маршрута проехать всего пути и последние 3 км. Найдите длину туристического маршрута?

Пояснение репетитора по математике: данные задачи представляют собой полноценный комплект упражнений для одного урока с сильным учеником 4 — 5 класса по теме: «задачи на дроби». Он представлен пятью блоками полуолимпиадных номеров, рассчитанных на решение без применения уравнений. Рекомендую репетиторам по математике разбирать одну задачу самостоятельно, другую оставлять для самостоятельную работы ученика в присутствии репетитора, а еще одну задавать на дом. В каждом блоке для этого имеется соответствующее количество задач.

Колпаков А.Н Репетитор по математике в Москве. Строгино

ankolpakov.ru